Details
Original language | English |
---|---|
Article number | 105 |
Journal | Energies |
Volume | 11 |
Issue number | 1 |
Early online date | 3 Jan 2018 |
Publication status | Published - Jan 2018 |
Abstract
In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.
Keywords
- Aviation, Energy storage, Fuel tanks, Hydrogen storage, Proton-exchange membrane fuel cell
ASJC Scopus subject areas
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Energy(all)
- Energy Engineering and Power Technology
- Energy(all)
- Energy (miscellaneous)
- Mathematics(all)
- Control and Optimization
- Engineering(all)
- Electrical and Electronic Engineering
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Energies, Vol. 11, No. 1, 105, 01.2018.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications
AU - Winnefeld, Christopher
AU - Kadyk, Thomas
AU - Bensmann, Boris
AU - Krewer, Ulrike
AU - Hanke-Rauschenbach, Richard
N1 - Funding information: Acknowledgments: We would like to acknowledge the support of the Ministry for Science and Culture of Lower Saxony (Grant No. VWZN3177) for funding the research project “Energy System Transformation in Aviation” in the initiative “Niedersächsisches Vorab”. Further acknowledgements go to Bekir Yildiz for providing the authors with the mission data.
PY - 2018/1
Y1 - 2018/1
N2 - In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.
AB - In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.
KW - Aviation
KW - Energy storage
KW - Fuel tanks
KW - Hydrogen storage
KW - Proton-exchange membrane fuel cell
UR - http://www.scopus.com/inward/record.url?scp=85040308847&partnerID=8YFLogxK
U2 - 10.3390/en11010105
DO - 10.3390/en11010105
M3 - Article
AN - SCOPUS:85040308847
VL - 11
JO - Energies
JF - Energies
SN - 1996-1073
IS - 1
M1 - 105
ER -