Modellierung und Erweiterung des Frequenzübertragungsbereichs von induktiven Mittelspannungswandlern

Research output: ThesisDoctoral thesis

Authors

  • Christoph Buchhagen

Research Organisations

View graph of relations

Details

Original languageGerman
QualificationDoctor of Engineering
Awarding Institution
Publication statusPublished - 2015

Abstract

Aufgrund des vermehrten Einsatzes von leistungselektronischen Betriebsmitteln verschlechtert sich zunehmend die Spannungsqualität in den elektrischen Netzen. Insbesondere steigt die Anzahl harmonischer und zwischenharmonischer Oberschwingungen. Daher ist es zukünftig vermehrt erforderlich, die Spannungsqualität zu überwachen. Für die dafür notwendige Messung der Spannung kommen insbesondere in den Verteilnetzen induktive Spannungswandler zum Einsatz. Diese besitzen jedoch Resonanzfrequenzen bei wenigen kHz, die einer Verfälschung der Messergebnisse führen. Daher sind induktive Spannungswandler zur Überwachung höherfrequenter Spannungsanteile nur bedingt geeignet. Zwar existieren frequenzkompensierte RC-Teiler, jedoch besitzen diese einige entscheidende Nachteile gegenüber induktiven Wandlern. Damit Netzbetreiber auch zukünftig die bisher bevorzugten induktiven Spannungswandler einsetzen können, ist es erforderlich, deren Frequenzverhalten zu verbessern.

In dieser Arbeit erfolgt die Aufstellung eines Modells zur Berechnung des Frequenzverhaltens von induktiven Mittelspannungswandlern. Dabei findet ein Ersatzschaltbild Verwendung, welches einen hohen praktischen Bezug besitzt, so dass Ersatzschaltbildelemente direkt geometrischen Größen am realen Wandler zugeordnet und mit diesen parametriert werden können. Durch die Analyse von Einflussgrößen auf die Frequenz der ersten Resonanzstelle gelingt es, die signifikanten konstruktiven Parameter zu identifizieren. Unter Beachtung der fertigungstechnischen Auslegungsgrenzen wird die erste Eigenfrequenz an mehreren Prototypen in einen hohen Frequenzbereich verschoben. Allerdings ist die Abweichung vom Nennübersetzungsverhältnis bei hohen Frequenzen weiterhin bedeutend. Deshalb ist zusätzlich noch die Minimierung des Übertragungsfehlers erforderlich. Dies erfolgt durch eine Beeinflussung der Lage der Pol- und Nullstellen im Frequenzgang des Spannungswandlers. Diese werden unter anderem derart beeinflusst, dass sie exakt aufeinander liegen und sich gegenseitig auslöschen. Ein optimiertes Übertragungsverhalten stellt sich jedoch ein, wenn die Polstelle geringfügig vor der Nullstelle liegt. Dadurch gelang es 20-kV-Spannungswandler zu entwickeln, die ein deutlich verbessertes Frequenzverhalten als herkömmliche Spannungswandler aufweisen, welche eine erste Resonanzstelle bei ca. 5 kHz besitzen. Bis zu 9 kHz besitzen die Wandler eine geringere Abweichung als 3 % in der Amplitude und 2° in der Phase.

Cite this

Modellierung und Erweiterung des Frequenzübertragungsbereichs von induktiven Mittelspannungswandlern. / Buchhagen, Christoph.
2015. 193 p.

Research output: ThesisDoctoral thesis

Buchhagen, C 2015, 'Modellierung und Erweiterung des Frequenzübertragungsbereichs von induktiven Mittelspannungswandlern', Doctor of Engineering, Leibniz University Hannover.
Buchhagen, C. (2015). Modellierung und Erweiterung des Frequenzübertragungsbereichs von induktiven Mittelspannungswandlern. [Doctoral thesis, Leibniz University Hannover].
Download
@phdthesis{5d6da6cbaded4f7293484b5e15a1c8d8,
title = "Modellierung und Erweiterung des Frequenz{\"u}bertragungsbereichs von induktiven Mittelspannungswandlern",
abstract = "Aufgrund des vermehrten Einsatzes von leistungselektronischen Betriebsmitteln verschlechtert sich zunehmend die Spannungsqualit{\"a}t in den elektrischen Netzen. Insbesondere steigt die Anzahl harmonischer und zwischenharmonischer Oberschwingungen. Daher ist es zuk{\"u}nftig vermehrt erforderlich, die Spannungsqualit{\"a}t zu {\"u}berwachen. F{\"u}r die daf{\"u}r notwendige Messung der Spannung kommen insbesondere in den Verteilnetzen induktive Spannungswandler zum Einsatz. Diese besitzen jedoch Resonanzfrequenzen bei wenigen kHz, die einer Verf{\"a}lschung der Messergebnisse f{\"u}hren. Daher sind induktive Spannungswandler zur {\"U}berwachung h{\"o}herfrequenter Spannungsanteile nur bedingt geeignet. Zwar existieren frequenzkompensierte RC-Teiler, jedoch besitzen diese einige entscheidende Nachteile gegen{\"u}ber induktiven Wandlern. Damit Netzbetreiber auch zuk{\"u}nftig die bisher bevorzugten induktiven Spannungswandler einsetzen k{\"o}nnen, ist es erforderlich, deren Frequenzverhalten zu verbessern.In dieser Arbeit erfolgt die Aufstellung eines Modells zur Berechnung des Frequenzverhaltens von induktiven Mittelspannungswandlern. Dabei findet ein Ersatzschaltbild Verwendung, welches einen hohen praktischen Bezug besitzt, so dass Ersatzschaltbildelemente direkt geometrischen Gr{\"o}{\ss}en am realen Wandler zugeordnet und mit diesen parametriert werden k{\"o}nnen. Durch die Analyse von Einflussgr{\"o}{\ss}en auf die Frequenz der ersten Resonanzstelle gelingt es, die signifikanten konstruktiven Parameter zu identifizieren. Unter Beachtung der fertigungstechnischen Auslegungsgrenzen wird die erste Eigenfrequenz an mehreren Prototypen in einen hohen Frequenzbereich verschoben. Allerdings ist die Abweichung vom Nenn{\"u}bersetzungsverh{\"a}ltnis bei hohen Frequenzen weiterhin bedeutend. Deshalb ist zus{\"a}tzlich noch die Minimierung des {\"U}bertragungsfehlers erforderlich. Dies erfolgt durch eine Beeinflussung der Lage der Pol- und Nullstellen im Frequenzgang des Spannungswandlers. Diese werden unter anderem derart beeinflusst, dass sie exakt aufeinander liegen und sich gegenseitig ausl{\"o}schen. Ein optimiertes {\"U}bertragungsverhalten stellt sich jedoch ein, wenn die Polstelle geringf{\"u}gig vor der Nullstelle liegt. Dadurch gelang es 20-kV-Spannungswandler zu entwickeln, die ein deutlich verbessertes Frequenzverhalten als herk{\"o}mmliche Spannungswandler aufweisen, welche eine erste Resonanzstelle bei ca. 5 kHz besitzen. Bis zu 9 kHz besitzen die Wandler eine geringere Abweichung als 3 % in der Amplitude und 2° in der Phase. ",
author = "Christoph Buchhagen",
note = "Dissertation",
year = "2015",
language = "Deutsch",
school = "Gottfried Wilhelm Leibniz Universit{\"a}t Hannover",

}

Download

TY - BOOK

T1 - Modellierung und Erweiterung des Frequenzübertragungsbereichs von induktiven Mittelspannungswandlern

AU - Buchhagen, Christoph

N1 - Dissertation

PY - 2015

Y1 - 2015

N2 - Aufgrund des vermehrten Einsatzes von leistungselektronischen Betriebsmitteln verschlechtert sich zunehmend die Spannungsqualität in den elektrischen Netzen. Insbesondere steigt die Anzahl harmonischer und zwischenharmonischer Oberschwingungen. Daher ist es zukünftig vermehrt erforderlich, die Spannungsqualität zu überwachen. Für die dafür notwendige Messung der Spannung kommen insbesondere in den Verteilnetzen induktive Spannungswandler zum Einsatz. Diese besitzen jedoch Resonanzfrequenzen bei wenigen kHz, die einer Verfälschung der Messergebnisse führen. Daher sind induktive Spannungswandler zur Überwachung höherfrequenter Spannungsanteile nur bedingt geeignet. Zwar existieren frequenzkompensierte RC-Teiler, jedoch besitzen diese einige entscheidende Nachteile gegenüber induktiven Wandlern. Damit Netzbetreiber auch zukünftig die bisher bevorzugten induktiven Spannungswandler einsetzen können, ist es erforderlich, deren Frequenzverhalten zu verbessern.In dieser Arbeit erfolgt die Aufstellung eines Modells zur Berechnung des Frequenzverhaltens von induktiven Mittelspannungswandlern. Dabei findet ein Ersatzschaltbild Verwendung, welches einen hohen praktischen Bezug besitzt, so dass Ersatzschaltbildelemente direkt geometrischen Größen am realen Wandler zugeordnet und mit diesen parametriert werden können. Durch die Analyse von Einflussgrößen auf die Frequenz der ersten Resonanzstelle gelingt es, die signifikanten konstruktiven Parameter zu identifizieren. Unter Beachtung der fertigungstechnischen Auslegungsgrenzen wird die erste Eigenfrequenz an mehreren Prototypen in einen hohen Frequenzbereich verschoben. Allerdings ist die Abweichung vom Nennübersetzungsverhältnis bei hohen Frequenzen weiterhin bedeutend. Deshalb ist zusätzlich noch die Minimierung des Übertragungsfehlers erforderlich. Dies erfolgt durch eine Beeinflussung der Lage der Pol- und Nullstellen im Frequenzgang des Spannungswandlers. Diese werden unter anderem derart beeinflusst, dass sie exakt aufeinander liegen und sich gegenseitig auslöschen. Ein optimiertes Übertragungsverhalten stellt sich jedoch ein, wenn die Polstelle geringfügig vor der Nullstelle liegt. Dadurch gelang es 20-kV-Spannungswandler zu entwickeln, die ein deutlich verbessertes Frequenzverhalten als herkömmliche Spannungswandler aufweisen, welche eine erste Resonanzstelle bei ca. 5 kHz besitzen. Bis zu 9 kHz besitzen die Wandler eine geringere Abweichung als 3 % in der Amplitude und 2° in der Phase.

AB - Aufgrund des vermehrten Einsatzes von leistungselektronischen Betriebsmitteln verschlechtert sich zunehmend die Spannungsqualität in den elektrischen Netzen. Insbesondere steigt die Anzahl harmonischer und zwischenharmonischer Oberschwingungen. Daher ist es zukünftig vermehrt erforderlich, die Spannungsqualität zu überwachen. Für die dafür notwendige Messung der Spannung kommen insbesondere in den Verteilnetzen induktive Spannungswandler zum Einsatz. Diese besitzen jedoch Resonanzfrequenzen bei wenigen kHz, die einer Verfälschung der Messergebnisse führen. Daher sind induktive Spannungswandler zur Überwachung höherfrequenter Spannungsanteile nur bedingt geeignet. Zwar existieren frequenzkompensierte RC-Teiler, jedoch besitzen diese einige entscheidende Nachteile gegenüber induktiven Wandlern. Damit Netzbetreiber auch zukünftig die bisher bevorzugten induktiven Spannungswandler einsetzen können, ist es erforderlich, deren Frequenzverhalten zu verbessern.In dieser Arbeit erfolgt die Aufstellung eines Modells zur Berechnung des Frequenzverhaltens von induktiven Mittelspannungswandlern. Dabei findet ein Ersatzschaltbild Verwendung, welches einen hohen praktischen Bezug besitzt, so dass Ersatzschaltbildelemente direkt geometrischen Größen am realen Wandler zugeordnet und mit diesen parametriert werden können. Durch die Analyse von Einflussgrößen auf die Frequenz der ersten Resonanzstelle gelingt es, die signifikanten konstruktiven Parameter zu identifizieren. Unter Beachtung der fertigungstechnischen Auslegungsgrenzen wird die erste Eigenfrequenz an mehreren Prototypen in einen hohen Frequenzbereich verschoben. Allerdings ist die Abweichung vom Nennübersetzungsverhältnis bei hohen Frequenzen weiterhin bedeutend. Deshalb ist zusätzlich noch die Minimierung des Übertragungsfehlers erforderlich. Dies erfolgt durch eine Beeinflussung der Lage der Pol- und Nullstellen im Frequenzgang des Spannungswandlers. Diese werden unter anderem derart beeinflusst, dass sie exakt aufeinander liegen und sich gegenseitig auslöschen. Ein optimiertes Übertragungsverhalten stellt sich jedoch ein, wenn die Polstelle geringfügig vor der Nullstelle liegt. Dadurch gelang es 20-kV-Spannungswandler zu entwickeln, die ein deutlich verbessertes Frequenzverhalten als herkömmliche Spannungswandler aufweisen, welche eine erste Resonanzstelle bei ca. 5 kHz besitzen. Bis zu 9 kHz besitzen die Wandler eine geringere Abweichung als 3 % in der Amplitude und 2° in der Phase.

M3 - Dissertation

ER -