Details
Original language | English |
---|---|
Pages (from-to) | 31-43 |
Number of pages | 13 |
Journal | Progress in Photovoltaics: Research and Applications |
Volume | 20 |
Issue number | 1 |
Early online date | 11 Mar 2010 |
Publication status | Published - 29 Dec 2011 |
Abstract
Modeling of transport and recombination of charge carriers in solar cells is useful for understanding and improving the device performance. We implement the fully coupled transport equations for electrons and holes into the finite-element partial differential equation solver COMSOL. The dopant-diffused surface regions such as junctions, floating junctions, or back surface field layers are treated as conductive boundaries of the volume in which the semiconductor equations are solved. This so-called conductive boundary (CoBo) model characterizes diffused layers by their sheet resistances and diode saturation current densities. Both are directly experimentally accessible. The CoBo model exhibits excellent numerical stability and enables two-dimensional simulations on a laptop. We find agreement when testing the two-dimensional COMSOL implementation of the CoBo model for one-dimensional devices against simulations using the code PC1D. We apply the CoBo model to elucidate how the sheet resistance of diffused vias impacts the power conversion efficiency of emitter wrap through solar cells.
Keywords
- diffused layers, finite element modeling, free energy, solar cells
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Electrical and Electronic Engineering
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Progress in Photovoltaics: Research and Applications, Vol. 20, No. 1, 29.12.2011, p. 31-43.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Modeling solar cells with the dopant-diffused layers treated as conductive boundaries
AU - Brendel, Rolf
PY - 2011/12/29
Y1 - 2011/12/29
N2 - Modeling of transport and recombination of charge carriers in solar cells is useful for understanding and improving the device performance. We implement the fully coupled transport equations for electrons and holes into the finite-element partial differential equation solver COMSOL. The dopant-diffused surface regions such as junctions, floating junctions, or back surface field layers are treated as conductive boundaries of the volume in which the semiconductor equations are solved. This so-called conductive boundary (CoBo) model characterizes diffused layers by their sheet resistances and diode saturation current densities. Both are directly experimentally accessible. The CoBo model exhibits excellent numerical stability and enables two-dimensional simulations on a laptop. We find agreement when testing the two-dimensional COMSOL implementation of the CoBo model for one-dimensional devices against simulations using the code PC1D. We apply the CoBo model to elucidate how the sheet resistance of diffused vias impacts the power conversion efficiency of emitter wrap through solar cells.
AB - Modeling of transport and recombination of charge carriers in solar cells is useful for understanding and improving the device performance. We implement the fully coupled transport equations for electrons and holes into the finite-element partial differential equation solver COMSOL. The dopant-diffused surface regions such as junctions, floating junctions, or back surface field layers are treated as conductive boundaries of the volume in which the semiconductor equations are solved. This so-called conductive boundary (CoBo) model characterizes diffused layers by their sheet resistances and diode saturation current densities. Both are directly experimentally accessible. The CoBo model exhibits excellent numerical stability and enables two-dimensional simulations on a laptop. We find agreement when testing the two-dimensional COMSOL implementation of the CoBo model for one-dimensional devices against simulations using the code PC1D. We apply the CoBo model to elucidate how the sheet resistance of diffused vias impacts the power conversion efficiency of emitter wrap through solar cells.
KW - diffused layers
KW - finite element modeling
KW - free energy
KW - solar cells
UR - http://www.scopus.com/inward/record.url?scp=84855331023&partnerID=8YFLogxK
U2 - 10.1002/pip.954
DO - 10.1002/pip.954
M3 - Article
AN - SCOPUS:84855331023
VL - 20
SP - 31
EP - 43
JO - Progress in Photovoltaics: Research and Applications
JF - Progress in Photovoltaics: Research and Applications
SN - 1062-7995
IS - 1
ER -