Details
Original language | English |
---|---|
Article number | 045006 |
Number of pages | 44 |
Journal | Classical and quantum gravity |
Volume | 37 |
Issue number | 4 |
Publication status | Published - 16 Jan 2020 |
Abstract
GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.
Keywords
- compact object mergers, gravitational wave astronomy, neutron star equation of state, neutron stars
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Classical and quantum gravity, Vol. 37, No. 4, 045006, 16.01.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B P
AU - Abbott, R
AU - Abbott, T D
AU - Abraham, S
AU - Acernese, F
AU - Ackley, K
AU - Adams, C
AU - Adya, V B
AU - Affeldt, C
AU - Agathos, M
AU - Agatsuma, K
AU - Aggarwal, N
AU - Aguiar, O D
AU - Aiello, L
AU - Ain, A
AU - Ajith, P
AU - Allen, G
AU - Allocca, A
AU - Aloy, M A
AU - Altin, P A
AU - Amato, A
AU - Anand, S
AU - Ananyeva, A
AU - Anderson, S B
AU - Anderson, W G
AU - Angelova, S V
AU - Antier, S
AU - Appert, S
AU - Arai, K
AU - Araya, M C
AU - Areeda, J S
AU - Arène, M
AU - Arnaud, N
AU - Aronson, S M
AU - Arun, K G
AU - Ascenzi, S
AU - Ashton, G
AU - Aston, S M
AU - Astone, P
AU - Aubin, F
AU - Danilishin, S L
AU - Danzmann, K
AU - Heurs, M
AU - Lück, H
AU - Steinmeyer, D
AU - Vahlbruch, H
AU - Wei, L-w
AU - Wilken, D M
AU - Willke, B
AU - Wittel, H
AU - Bose, Sukanta
AU - Brown, D. D.
AU - Chen, Y. B.
AU - Gniesmer, J.
AU - Hennig, J.
AU - Hanke, Manuela
AU - Hübner, M. T.
AU - Lang, R. N.
AU - Lee, C. H.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Lee, K.
AU - Li, X.
AU - Rose, C. A.
AU - Rose, D.
AU - Sanders, J. R.
AU - Schmidt, Patricia
AU - Sun, L.
AU - Wang, Y. F.
AU - Wu, D. S.
AU - Zhang, L.
AU - Zhou, Minchuan
AU - Zhu, X. J.
AU - Bergmann, G.
AU - Bisht, Aparna
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, Marc
AU - Cabero, M.
AU - de Varona, O.
AU - Hochheim, S.
AU - Junker, J.
AU - Kastaun, W.
AU - Khan, S.
AU - Kaufer, Stefan
AU - Kirchhoff, R.
AU - Koch, Patrick
AU - Koper, N.
AU - Köhlenbeck, S. M.
AU - Kringel, Volker
AU - Krämer, C.
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Lough, James
AU - Mehmet, Moritz
AU - Meylahn, Fabian
AU - Mukherjee, Arunava
AU - Mukund, Nikhil
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Rüdiger, A.
AU - Phelps, M.
AU - Schreiber, Emil
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Standke, M.
AU - Steinke, M.
AU - Weinert, Michael
AU - Wellmann, F.
AU - Weßels, Peter
AU - Winkler, W.
AU - Woehler, J.
AU - Aufmuth, Peter
PY - 2020/1/16
Y1 - 2020/1/16
N2 - GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.
AB - GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.
KW - compact object mergers
KW - gravitational wave astronomy
KW - neutron star equation of state
KW - neutron stars
UR - http://www.scopus.com/inward/record.url?scp=85081288697&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1908.01012
DO - 10.48550/arXiv.1908.01012
M3 - Article
VL - 37
JO - Classical and quantum gravity
JF - Classical and quantum gravity
SN - 0264-9381
IS - 4
M1 - 045006
ER -