Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant

Research output: Contribution to journalArticleResearchpeer review

Authors

  • The LIGO Scientific Collaboration
  • The Virgo Collaboration
  • C Affeldt
  • S L Danilishin
  • K Danzmann
  • M Heurs
  • H Lück
  • D Steinmeyer
  • H Vahlbruch
  • L-w Wei
  • D M Wilken
  • B Willke
  • H Wittel
  • Sukanta Bose
  • D. D. Brown
  • Y. B. Chen
  • J. Gniesmer
  • J. Hennig
  • Manuela Hanke
  • M. T. Hübner
  • R. N. Lang
  • C. H. Lee
  • H. K. Lee
  • H. M. Lee
  • H. W. Lee
  • J. Lee
  • K. Lee
  • X. Li
  • C. A. Rose
  • D. Rose
  • J. R. Sanders
  • Patricia Schmidt
  • L. Sun
  • Y. F. Wang
  • D. S. Wu
  • L. Zhang
  • Minchuan Zhou
  • X. J. Zhu
  • G. Bergmann
  • Aparna Bisht
  • Nina Bode
  • P. Booker
  • Marc Brinkmann
  • M. Cabero
  • O. de Varona
  • S. Hochheim
  • J. Junker
  • W. Kastaun
  • S. Khan
  • Stefan Kaufer
  • R. Kirchhoff
  • Patrick Koch
  • N. Koper
  • S. M. Köhlenbeck
  • Volker Kringel
  • C. Krämer
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • James Lough
  • Moritz Mehmet
  • Fabian Meylahn
  • Arunava Mukherjee
  • Nikhil Mukund
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • A. Rüdiger
  • M. Phelps
  • Emil Schreiber
  • B. W. Schulte
  • Y. Setyawati
  • M. Standke
  • M. Steinke
  • Michael Weinert
  • F. Wellmann
  • Peter Weßels
  • W. Winkler
  • J. Woehler
  • Peter Aufmuth

External Research Organisations

  • Australian National University
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • Carson College of Business
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Adelaide
  • Universität Hamburg
  • University of Glasgow
  • Monash University
  • LIGO Laboratory
  • Inje University
  • Stanford University
  • California Institute of Caltech (Caltech)
  • California State University Fullerton
  • The California State University
  • Radboud University Nijmegen (RU)
  • University of Melbourne
  • The Chinese University of Hong Kong
  • University of Texas Rio Grande Valley
  • Northwestern University
View graph of relations

Details

Original languageEnglish
Article number045006
Number of pages44
JournalClassical and quantum gravity
Volume37
Issue number4
Publication statusPublished - 16 Jan 2020

Abstract

GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

Keywords

    compact object mergers, gravitational wave astronomy, neutron star equation of state, neutron stars

ASJC Scopus subject areas

Cite this

Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. / The LIGO Scientific Collaboration; The Virgo Collaboration; Affeldt, C et al.
In: Classical and quantum gravity, Vol. 37, No. 4, 045006, 16.01.2020.

Research output: Contribution to journalArticleResearchpeer review

The LIGO Scientific Collaboration, The Virgo Collaboration, Affeldt, C, Danilishin, SL, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, H, Wei, L, Wilken, DM, Willke, B, Wittel, H, Bose, S, Brown, DD, Chen, YB, Gniesmer, J, Hennig, J, Hanke, M, Hübner, MT, Lang, RN, Lee, CH, Lee, HK, Lee, HM, Lee, HW, Lee, J, Lee, K, Li, X, Rose, CA, Rose, D, Sanders, JR, Schmidt, P, Sun, L, Wang, YF, Wu, DS, Zhang, L, Zhou, M, Zhu, XJ, Bergmann, G, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, de Varona, O, Hochheim, S, Junker, J, Kastaun, W, Khan, S, Kaufer, S, Kirchhoff, R, Koch, P, Koper, N, Köhlenbeck, SM, Kringel, V, Krämer, C, Kuehn, G, Leavey, S, Lehmann, J, Lough, J, Mehmet, M, Meylahn, F, Mukherjee, A, Mukund, N, Nery, M, Ohme, F, Oppermann, P, Rüdiger, A, Phelps, M, Schreiber, E, Schulte, BW, Setyawati, Y, Standke, M, Steinke, M, Weinert, M, Wellmann, F, Weßels, P, Winkler, W, Woehler, J & Aufmuth, P 2020, 'Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant', Classical and quantum gravity, vol. 37, no. 4, 045006. https://doi.org/10.48550/arXiv.1908.01012, https://doi.org/10.1088/1361-6382/ab5f7c, https://doi.org/10.15488/11395
The LIGO Scientific Collaboration, The Virgo Collaboration, Affeldt, C., Danilishin, S. L., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H., Wei, L., Wilken, D. M., Willke, B., Wittel, H., Bose, S., Brown, D. D., Chen, Y. B., Gniesmer, J., Hennig, J., Hanke, M., ... Aufmuth, P. (2020). Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. Classical and quantum gravity, 37(4), Article 045006. https://doi.org/10.48550/arXiv.1908.01012, https://doi.org/10.1088/1361-6382/ab5f7c, https://doi.org/10.15488/11395
The LIGO Scientific Collaboration, The Virgo Collaboration, Affeldt C, Danilishin SL, Danzmann K, Heurs M et al. Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. Classical and quantum gravity. 2020 Jan 16;37(4):045006. doi: 10.48550/arXiv.1908.01012, 10.1088/1361-6382/ab5f7c, 10.15488/11395
The LIGO Scientific Collaboration ; The Virgo Collaboration ; Affeldt, C et al. / Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. In: Classical and quantum gravity. 2020 ; Vol. 37, No. 4.
Download
@article{736ef4316ac64893b532d7fe7a4dd8ea,
title = "Model comparison from LIGO–Virgo data on GW170817{\textquoteright}s binary components and consequences for the merger remnant",
abstract = "GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.",
keywords = "compact object mergers, gravitational wave astronomy, neutron star equation of state, neutron stars",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and Abbott, {B P} and R Abbott and Abbott, {T D} and S Abraham and F Acernese and K Ackley and C Adams and Adya, {V B} and C Affeldt and M Agathos and K Agatsuma and N Aggarwal and Aguiar, {O D} and L Aiello and A Ain and P Ajith and G Allen and A Allocca and Aloy, {M A} and Altin, {P A} and A Amato and S Anand and A Ananyeva and Anderson, {S B} and Anderson, {W G} and Angelova, {S V} and S Antier and S Appert and K Arai and Araya, {M C} and Areeda, {J S} and M Ar{\`e}ne and N Arnaud and Aronson, {S M} and Arun, {K G} and S Ascenzi and G Ashton and Aston, {S M} and P Astone and F Aubin and Danilishin, {S L} and K Danzmann and M Heurs and H L{\"u}ck and D Steinmeyer and H Vahlbruch and L-w Wei and Wilken, {D M} and B Willke and H Wittel and Sukanta Bose and Brown, {D. D.} and Chen, {Y. B.} and J. Gniesmer and J. Hennig and Manuela Hanke and H{\"u}bner, {M. T.} and Lang, {R. N.} and Lee, {C. H.} and Lee, {H. K.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and K. Lee and X. Li and Rose, {C. A.} and D. Rose and Sanders, {J. R.} and Patricia Schmidt and L. Sun and Wang, {Y. F.} and Wu, {D. S.} and L. Zhang and Minchuan Zhou and Zhu, {X. J.} and G. Bergmann and Aparna Bisht and Nina Bode and P. Booker and Marc Brinkmann and M. Cabero and {de Varona}, O. and S. Hochheim and J. Junker and W. Kastaun and S. Khan and Stefan Kaufer and R. Kirchhoff and Patrick Koch and N. Koper and K{\"o}hlenbeck, {S. M.} and Volker Kringel and C. Kr{\"a}mer and G. Kuehn and S. Leavey and J. Lehmann and James Lough and Moritz Mehmet and Fabian Meylahn and Arunava Mukherjee and Nikhil Mukund and M. Nery and F. Ohme and P. Oppermann and A. R{\"u}diger and M. Phelps and Emil Schreiber and Schulte, {B. W.} and Y. Setyawati and M. Standke and M. Steinke and Michael Weinert and F. Wellmann and Peter We{\ss}els and W. Winkler and J. Woehler and Peter Aufmuth",
year = "2020",
month = jan,
day = "16",
doi = "10.48550/arXiv.1908.01012",
language = "English",
volume = "37",
journal = "Classical and quantum gravity",
issn = "0264-9381",
publisher = "IOP Publishing Ltd.",
number = "4",

}

Download

TY - JOUR

T1 - Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B P

AU - Abbott, R

AU - Abbott, T D

AU - Abraham, S

AU - Acernese, F

AU - Ackley, K

AU - Adams, C

AU - Adya, V B

AU - Affeldt, C

AU - Agathos, M

AU - Agatsuma, K

AU - Aggarwal, N

AU - Aguiar, O D

AU - Aiello, L

AU - Ain, A

AU - Ajith, P

AU - Allen, G

AU - Allocca, A

AU - Aloy, M A

AU - Altin, P A

AU - Amato, A

AU - Anand, S

AU - Ananyeva, A

AU - Anderson, S B

AU - Anderson, W G

AU - Angelova, S V

AU - Antier, S

AU - Appert, S

AU - Arai, K

AU - Araya, M C

AU - Areeda, J S

AU - Arène, M

AU - Arnaud, N

AU - Aronson, S M

AU - Arun, K G

AU - Ascenzi, S

AU - Ashton, G

AU - Aston, S M

AU - Astone, P

AU - Aubin, F

AU - Danilishin, S L

AU - Danzmann, K

AU - Heurs, M

AU - Lück, H

AU - Steinmeyer, D

AU - Vahlbruch, H

AU - Wei, L-w

AU - Wilken, D M

AU - Willke, B

AU - Wittel, H

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. B.

AU - Gniesmer, J.

AU - Hennig, J.

AU - Hanke, Manuela

AU - Hübner, M. T.

AU - Lang, R. N.

AU - Lee, C. H.

AU - Lee, H. K.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Lee, K.

AU - Li, X.

AU - Rose, C. A.

AU - Rose, D.

AU - Sanders, J. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - Wang, Y. F.

AU - Wu, D. S.

AU - Zhang, L.

AU - Zhou, Minchuan

AU - Zhu, X. J.

AU - Bergmann, G.

AU - Bisht, Aparna

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, Marc

AU - Cabero, M.

AU - de Varona, O.

AU - Hochheim, S.

AU - Junker, J.

AU - Kastaun, W.

AU - Khan, S.

AU - Kaufer, Stefan

AU - Kirchhoff, R.

AU - Koch, Patrick

AU - Koper, N.

AU - Köhlenbeck, S. M.

AU - Kringel, Volker

AU - Krämer, C.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Lough, James

AU - Mehmet, Moritz

AU - Meylahn, Fabian

AU - Mukherjee, Arunava

AU - Mukund, Nikhil

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Rüdiger, A.

AU - Phelps, M.

AU - Schreiber, Emil

AU - Schulte, B. W.

AU - Setyawati, Y.

AU - Standke, M.

AU - Steinke, M.

AU - Weinert, Michael

AU - Wellmann, F.

AU - Weßels, Peter

AU - Winkler, W.

AU - Woehler, J.

AU - Aufmuth, Peter

PY - 2020/1/16

Y1 - 2020/1/16

N2 - GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

AB - GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

KW - compact object mergers

KW - gravitational wave astronomy

KW - neutron star equation of state

KW - neutron stars

UR - http://www.scopus.com/inward/record.url?scp=85081288697&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1908.01012

DO - 10.48550/arXiv.1908.01012

M3 - Article

VL - 37

JO - Classical and quantum gravity

JF - Classical and quantum gravity

SN - 0264-9381

IS - 4

M1 - 045006

ER -

By the same author(s)