Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-Δ-Sr2Fe1.5Mo0.5O5+Δ membrane reactor with improved stability

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Wenyuan Liang
  • Hangyue Zhou
  • Jürgen Caro
  • Heqing Jiang

External Research Organisations

  • University of the Chinese Academy of Sciences (UCAS)
  • Chinese Academy of Sciences (CAS)
View graph of relations

Details

Original languageEnglish
Pages (from-to)14478-14485
Number of pages8
JournalInternational Journal of Hydrogen Energy
Volume43
Issue number31
Early online date28 Jun 2018
Publication statusPublished - 2 Aug 2018

Abstract

Coupling of partial oxidation of methane (POM) with water dissociation in an oxygen transport membrane is a promising technology for methane utilization. However, cobalt-based membrane materials show poor stability under the above harsh conditions. In this work, a nominal 60 wt % Ce0.8Sm0.2O2-δ-40 wt % Sr2Fe1.5Mo0.5O5+δ (CSO-SFMO) dual phase membrane is reported, which was synthesized by using a one-pot EDTA-citric acid complexing method. The phase structure and morphology of the CSO-SFMO membrane were characterized by XRD, SEM and EDXS. It was found that a uniform distribution of CSO phase with a fluorite structure and SFMO phase with a perovskite structure was achieved in the dual phase membrane. The CSO-SFMO membrane exhibited an improved stability compared with cobalt based perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) membrane under CO2 or reductive gas atmospheres. The oxygen permeation flux of the dual phase membrane was investigated under different oxygen partial pressure gradients: air/He, air/CO2, air/POM, and H2O/POM. At 950 °C, the oxygen permeation fluxes of the CSO-SFMO membrane under air/POM and H2O/POM gradients were 2.7 cm3 (STP) min−1 cm−2 and 0.75 cm3 (STP) min−1 cm−2, respectively, which were much higher than the oxygen flux of 0.1 cm3 (STP) min−1 cm−2 under air/He. Moreover, a CO selectivity of 98%, a CH4 conversion of 97% on the POM side and a H2 production of 1.5 cm3 (STP) min−1 cm−2 on the H2O splitting side were achieved in CSO-SFMO membrane reactor under the oxygen partial pressure gradient of H2O/POM, which was steadily run for 100 h before the measurement was intentionally stopped.

Keywords

    Hydrogen, Oxygen transport membrane, Partial oxidation of methane (POM), Water splitting

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-Δ-Sr2Fe1.5Mo0.5O5+Δ membrane reactor with improved stability. / Liang, Wenyuan; Zhou, Hangyue; Caro, Jürgen et al.
In: International Journal of Hydrogen Energy, Vol. 43, No. 31, 02.08.2018, p. 14478-14485.

Research output: Contribution to journalArticleResearchpeer review

Liang W, Zhou H, Caro J, Jiang H. Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-Δ-Sr2Fe1.5Mo0.5O5+Δ membrane reactor with improved stability. International Journal of Hydrogen Energy. 2018 Aug 2;43(31):14478-14485. Epub 2018 Jun 28. doi: 10.1016/j.ijhydene.2018.06.008
Download
@article{f61707710a5d42eebd75478c5cc60be2,
title = "Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-Δ-Sr2Fe1.5Mo0.5O5+Δ membrane reactor with improved stability",
abstract = "Coupling of partial oxidation of methane (POM) with water dissociation in an oxygen transport membrane is a promising technology for methane utilization. However, cobalt-based membrane materials show poor stability under the above harsh conditions. In this work, a nominal 60 wt % Ce0.8Sm0.2O2-δ-40 wt % Sr2Fe1.5Mo0.5O5+δ (CSO-SFMO) dual phase membrane is reported, which was synthesized by using a one-pot EDTA-citric acid complexing method. The phase structure and morphology of the CSO-SFMO membrane were characterized by XRD, SEM and EDXS. It was found that a uniform distribution of CSO phase with a fluorite structure and SFMO phase with a perovskite structure was achieved in the dual phase membrane. The CSO-SFMO membrane exhibited an improved stability compared with cobalt based perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) membrane under CO2 or reductive gas atmospheres. The oxygen permeation flux of the dual phase membrane was investigated under different oxygen partial pressure gradients: air/He, air/CO2, air/POM, and H2O/POM. At 950 °C, the oxygen permeation fluxes of the CSO-SFMO membrane under air/POM and H2O/POM gradients were 2.7 cm3 (STP) min−1 cm−2 and 0.75 cm3 (STP) min−1 cm−2, respectively, which were much higher than the oxygen flux of 0.1 cm3 (STP) min−1 cm−2 under air/He. Moreover, a CO selectivity of 98%, a CH4 conversion of 97% on the POM side and a H2 production of 1.5 cm3 (STP) min−1 cm−2 on the H2O splitting side were achieved in CSO-SFMO membrane reactor under the oxygen partial pressure gradient of H2O/POM, which was steadily run for 100 h before the measurement was intentionally stopped.",
keywords = "Hydrogen, Oxygen transport membrane, Partial oxidation of methane (POM), Water splitting",
author = "Wenyuan Liang and Hangyue Zhou and J{\"u}rgen Caro and Heqing Jiang",
note = "Publisher Copyright: {\textcopyright} 2018 Hydrogen Energy Publications LLC",
year = "2018",
month = aug,
day = "2",
doi = "10.1016/j.ijhydene.2018.06.008",
language = "English",
volume = "43",
pages = "14478--14485",
journal = "International Journal of Hydrogen Energy",
issn = "0360-3199",
publisher = "Elsevier Ltd.",
number = "31",

}

Download

TY - JOUR

T1 - Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-Δ-Sr2Fe1.5Mo0.5O5+Δ membrane reactor with improved stability

AU - Liang, Wenyuan

AU - Zhou, Hangyue

AU - Caro, Jürgen

AU - Jiang, Heqing

N1 - Publisher Copyright: © 2018 Hydrogen Energy Publications LLC

PY - 2018/8/2

Y1 - 2018/8/2

N2 - Coupling of partial oxidation of methane (POM) with water dissociation in an oxygen transport membrane is a promising technology for methane utilization. However, cobalt-based membrane materials show poor stability under the above harsh conditions. In this work, a nominal 60 wt % Ce0.8Sm0.2O2-δ-40 wt % Sr2Fe1.5Mo0.5O5+δ (CSO-SFMO) dual phase membrane is reported, which was synthesized by using a one-pot EDTA-citric acid complexing method. The phase structure and morphology of the CSO-SFMO membrane were characterized by XRD, SEM and EDXS. It was found that a uniform distribution of CSO phase with a fluorite structure and SFMO phase with a perovskite structure was achieved in the dual phase membrane. The CSO-SFMO membrane exhibited an improved stability compared with cobalt based perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) membrane under CO2 or reductive gas atmospheres. The oxygen permeation flux of the dual phase membrane was investigated under different oxygen partial pressure gradients: air/He, air/CO2, air/POM, and H2O/POM. At 950 °C, the oxygen permeation fluxes of the CSO-SFMO membrane under air/POM and H2O/POM gradients were 2.7 cm3 (STP) min−1 cm−2 and 0.75 cm3 (STP) min−1 cm−2, respectively, which were much higher than the oxygen flux of 0.1 cm3 (STP) min−1 cm−2 under air/He. Moreover, a CO selectivity of 98%, a CH4 conversion of 97% on the POM side and a H2 production of 1.5 cm3 (STP) min−1 cm−2 on the H2O splitting side were achieved in CSO-SFMO membrane reactor under the oxygen partial pressure gradient of H2O/POM, which was steadily run for 100 h before the measurement was intentionally stopped.

AB - Coupling of partial oxidation of methane (POM) with water dissociation in an oxygen transport membrane is a promising technology for methane utilization. However, cobalt-based membrane materials show poor stability under the above harsh conditions. In this work, a nominal 60 wt % Ce0.8Sm0.2O2-δ-40 wt % Sr2Fe1.5Mo0.5O5+δ (CSO-SFMO) dual phase membrane is reported, which was synthesized by using a one-pot EDTA-citric acid complexing method. The phase structure and morphology of the CSO-SFMO membrane were characterized by XRD, SEM and EDXS. It was found that a uniform distribution of CSO phase with a fluorite structure and SFMO phase with a perovskite structure was achieved in the dual phase membrane. The CSO-SFMO membrane exhibited an improved stability compared with cobalt based perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) membrane under CO2 or reductive gas atmospheres. The oxygen permeation flux of the dual phase membrane was investigated under different oxygen partial pressure gradients: air/He, air/CO2, air/POM, and H2O/POM. At 950 °C, the oxygen permeation fluxes of the CSO-SFMO membrane under air/POM and H2O/POM gradients were 2.7 cm3 (STP) min−1 cm−2 and 0.75 cm3 (STP) min−1 cm−2, respectively, which were much higher than the oxygen flux of 0.1 cm3 (STP) min−1 cm−2 under air/He. Moreover, a CO selectivity of 98%, a CH4 conversion of 97% on the POM side and a H2 production of 1.5 cm3 (STP) min−1 cm−2 on the H2O splitting side were achieved in CSO-SFMO membrane reactor under the oxygen partial pressure gradient of H2O/POM, which was steadily run for 100 h before the measurement was intentionally stopped.

KW - Hydrogen

KW - Oxygen transport membrane

KW - Partial oxidation of methane (POM)

KW - Water splitting

UR - http://www.scopus.com/inward/record.url?scp=85049003363&partnerID=8YFLogxK

U2 - 10.1016/j.ijhydene.2018.06.008

DO - 10.1016/j.ijhydene.2018.06.008

M3 - Article

AN - SCOPUS:85049003363

VL - 43

SP - 14478

EP - 14485

JO - International Journal of Hydrogen Energy

JF - International Journal of Hydrogen Energy

SN - 0360-3199

IS - 31

ER -