Mesostructured iron oxyhydroxides: 1. Synthesis, local structure, and magnetism

Research output: Contribution to journalArticleResearchpeer review

Authors

  • G. Wirnsberger
  • K. Gatterer
  • H. P. Fritzer
  • W. Grogger
  • B. Pillep
  • Peter Behrens
  • M. F. Hansen
  • C. Bender Koch

Research Organisations

External Research Organisations

  • University of Graz
  • Graz University of Technology
  • Kador & Partner PartG mbB
  • Technical University of Denmark
  • University of Copenhagen
View graph of relations

Details

Original languageEnglish
Pages (from-to)1453-1466
Number of pages14
JournalChemistry of materials
Volume13
Issue number5
Publication statusPublished - 18 Apr 2001

Abstract

The synthesis, local structure, and magnetism of lamellar iron(III) oxyhydroxide - surfactant composites prepared by two different methods have been investigated in detail. In the first method, Fe(II) solutions are oxidized by H2O2 in the presence of CnH2n+1OSO3- Na+ surfactants (n = 10, 12, 14, 16, 18), leading to lamellar composites with an inorganic wall thickness of around 28 Å. When a second method is used, namely, aging an Fe(III) solution for selected times after slightly increasing the pH with NH3 and subsequent addition of the surfactant, the inorganic wall thickness can be tuned between 19 and 26 Å, employing the same surfactants. EXAFS analysis of the Fe K edge X-ray absorption spectra reveals that the local structure of the inorganic part is a reminder of those found for the bulk iron oxyhydroxides goethite and akaganéite; that is, [Fe(O,OH)6] octahedra are predominantly connected by common edges and corners, the ratio of edge to corner sharing being similar to the mentioned bulk oxyhydroxides. Whereas coordination numbers for the first oxygen coordination shell are around 6, confirming an octahedral (or distorted octahedral) coordination around the Fe ions, coordination numbers found for the second and third Fe···Fe neighbors are low (around 2), indicating the presence of a considerable amount of vacancies around the central absorber ion or, as an alternative description, a low degree of condensation of the oxyhydroxide. Complementary to the local structural picture given by EXAFS, Mössbauer spectra elucidate the inorganic iron oxyhydroxide walls to be built up by domains of different crystallinity. The crystallinity is sensitive to the synthesis conditions used in the preparation. For example, under aging in the presence of NH3, longer aging times and higher temperatures result in a larger overall crystallinity of the inorganic part. By carefully controlling the reaction parameters, the thickness of the inorganic layers can be varied from around 19 Å to around 30 Å; also, the blocking temperatures of these superparamagnetic compounds observed by zero-field-cooled magnetization measurements can be controlled in the range between 4 and 30 K.

ASJC Scopus subject areas

Cite this

Mesostructured iron oxyhydroxides: 1. Synthesis, local structure, and magnetism. / Wirnsberger, G.; Gatterer, K.; Fritzer, H. P. et al.
In: Chemistry of materials, Vol. 13, No. 5, 18.04.2001, p. 1453-1466.

Research output: Contribution to journalArticleResearchpeer review

Wirnsberger, G, Gatterer, K, Fritzer, HP, Grogger, W, Pillep, B, Behrens, P, Hansen, MF & Bender Koch, C 2001, 'Mesostructured iron oxyhydroxides: 1. Synthesis, local structure, and magnetism', Chemistry of materials, vol. 13, no. 5, pp. 1453-1466. https://doi.org/10.1021/cm991211+
Wirnsberger, G., Gatterer, K., Fritzer, H. P., Grogger, W., Pillep, B., Behrens, P., Hansen, M. F., & Bender Koch, C. (2001). Mesostructured iron oxyhydroxides: 1. Synthesis, local structure, and magnetism. Chemistry of materials, 13(5), 1453-1466. https://doi.org/10.1021/cm991211+
Wirnsberger G, Gatterer K, Fritzer HP, Grogger W, Pillep B, Behrens P et al. Mesostructured iron oxyhydroxides: 1. Synthesis, local structure, and magnetism. Chemistry of materials. 2001 Apr 18;13(5):1453-1466. doi: 10.1021/cm991211+
Wirnsberger, G. ; Gatterer, K. ; Fritzer, H. P. et al. / Mesostructured iron oxyhydroxides : 1. Synthesis, local structure, and magnetism. In: Chemistry of materials. 2001 ; Vol. 13, No. 5. pp. 1453-1466.
Download
@article{f39fb0c87f584615b5ee12d0769e4ecf,
title = "Mesostructured iron oxyhydroxides: 1. Synthesis, local structure, and magnetism",
abstract = "The synthesis, local structure, and magnetism of lamellar iron(III) oxyhydroxide - surfactant composites prepared by two different methods have been investigated in detail. In the first method, Fe(II) solutions are oxidized by H2O2 in the presence of CnH2n+1OSO3- Na+ surfactants (n = 10, 12, 14, 16, 18), leading to lamellar composites with an inorganic wall thickness of around 28 {\AA}. When a second method is used, namely, aging an Fe(III) solution for selected times after slightly increasing the pH with NH3 and subsequent addition of the surfactant, the inorganic wall thickness can be tuned between 19 and 26 {\AA}, employing the same surfactants. EXAFS analysis of the Fe K edge X-ray absorption spectra reveals that the local structure of the inorganic part is a reminder of those found for the bulk iron oxyhydroxides goethite and akagan{\'e}ite; that is, [Fe(O,OH)6] octahedra are predominantly connected by common edges and corners, the ratio of edge to corner sharing being similar to the mentioned bulk oxyhydroxides. Whereas coordination numbers for the first oxygen coordination shell are around 6, confirming an octahedral (or distorted octahedral) coordination around the Fe ions, coordination numbers found for the second and third Fe···Fe neighbors are low (around 2), indicating the presence of a considerable amount of vacancies around the central absorber ion or, as an alternative description, a low degree of condensation of the oxyhydroxide. Complementary to the local structural picture given by EXAFS, M{\"o}ssbauer spectra elucidate the inorganic iron oxyhydroxide walls to be built up by domains of different crystallinity. The crystallinity is sensitive to the synthesis conditions used in the preparation. For example, under aging in the presence of NH3, longer aging times and higher temperatures result in a larger overall crystallinity of the inorganic part. By carefully controlling the reaction parameters, the thickness of the inorganic layers can be varied from around 19 {\AA} to around 30 {\AA}; also, the blocking temperatures of these superparamagnetic compounds observed by zero-field-cooled magnetization measurements can be controlled in the range between 4 and 30 K.",
author = "G. Wirnsberger and K. Gatterer and Fritzer, {H. P.} and W. Grogger and B. Pillep and Peter Behrens and Hansen, {M. F.} and {Bender Koch}, C.",
year = "2001",
month = apr,
day = "18",
doi = "10.1021/cm991211+",
language = "English",
volume = "13",
pages = "1453--1466",
journal = "Chemistry of materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "5",

}

Download

TY - JOUR

T1 - Mesostructured iron oxyhydroxides

T2 - 1. Synthesis, local structure, and magnetism

AU - Wirnsberger, G.

AU - Gatterer, K.

AU - Fritzer, H. P.

AU - Grogger, W.

AU - Pillep, B.

AU - Behrens, Peter

AU - Hansen, M. F.

AU - Bender Koch, C.

PY - 2001/4/18

Y1 - 2001/4/18

N2 - The synthesis, local structure, and magnetism of lamellar iron(III) oxyhydroxide - surfactant composites prepared by two different methods have been investigated in detail. In the first method, Fe(II) solutions are oxidized by H2O2 in the presence of CnH2n+1OSO3- Na+ surfactants (n = 10, 12, 14, 16, 18), leading to lamellar composites with an inorganic wall thickness of around 28 Å. When a second method is used, namely, aging an Fe(III) solution for selected times after slightly increasing the pH with NH3 and subsequent addition of the surfactant, the inorganic wall thickness can be tuned between 19 and 26 Å, employing the same surfactants. EXAFS analysis of the Fe K edge X-ray absorption spectra reveals that the local structure of the inorganic part is a reminder of those found for the bulk iron oxyhydroxides goethite and akaganéite; that is, [Fe(O,OH)6] octahedra are predominantly connected by common edges and corners, the ratio of edge to corner sharing being similar to the mentioned bulk oxyhydroxides. Whereas coordination numbers for the first oxygen coordination shell are around 6, confirming an octahedral (or distorted octahedral) coordination around the Fe ions, coordination numbers found for the second and third Fe···Fe neighbors are low (around 2), indicating the presence of a considerable amount of vacancies around the central absorber ion or, as an alternative description, a low degree of condensation of the oxyhydroxide. Complementary to the local structural picture given by EXAFS, Mössbauer spectra elucidate the inorganic iron oxyhydroxide walls to be built up by domains of different crystallinity. The crystallinity is sensitive to the synthesis conditions used in the preparation. For example, under aging in the presence of NH3, longer aging times and higher temperatures result in a larger overall crystallinity of the inorganic part. By carefully controlling the reaction parameters, the thickness of the inorganic layers can be varied from around 19 Å to around 30 Å; also, the blocking temperatures of these superparamagnetic compounds observed by zero-field-cooled magnetization measurements can be controlled in the range between 4 and 30 K.

AB - The synthesis, local structure, and magnetism of lamellar iron(III) oxyhydroxide - surfactant composites prepared by two different methods have been investigated in detail. In the first method, Fe(II) solutions are oxidized by H2O2 in the presence of CnH2n+1OSO3- Na+ surfactants (n = 10, 12, 14, 16, 18), leading to lamellar composites with an inorganic wall thickness of around 28 Å. When a second method is used, namely, aging an Fe(III) solution for selected times after slightly increasing the pH with NH3 and subsequent addition of the surfactant, the inorganic wall thickness can be tuned between 19 and 26 Å, employing the same surfactants. EXAFS analysis of the Fe K edge X-ray absorption spectra reveals that the local structure of the inorganic part is a reminder of those found for the bulk iron oxyhydroxides goethite and akaganéite; that is, [Fe(O,OH)6] octahedra are predominantly connected by common edges and corners, the ratio of edge to corner sharing being similar to the mentioned bulk oxyhydroxides. Whereas coordination numbers for the first oxygen coordination shell are around 6, confirming an octahedral (or distorted octahedral) coordination around the Fe ions, coordination numbers found for the second and third Fe···Fe neighbors are low (around 2), indicating the presence of a considerable amount of vacancies around the central absorber ion or, as an alternative description, a low degree of condensation of the oxyhydroxide. Complementary to the local structural picture given by EXAFS, Mössbauer spectra elucidate the inorganic iron oxyhydroxide walls to be built up by domains of different crystallinity. The crystallinity is sensitive to the synthesis conditions used in the preparation. For example, under aging in the presence of NH3, longer aging times and higher temperatures result in a larger overall crystallinity of the inorganic part. By carefully controlling the reaction parameters, the thickness of the inorganic layers can be varied from around 19 Å to around 30 Å; also, the blocking temperatures of these superparamagnetic compounds observed by zero-field-cooled magnetization measurements can be controlled in the range between 4 and 30 K.

UR - http://www.scopus.com/inward/record.url?scp=0034840681&partnerID=8YFLogxK

U2 - 10.1021/cm991211+

DO - 10.1021/cm991211+

M3 - Article

AN - SCOPUS:0034840681

VL - 13

SP - 1453

EP - 1466

JO - Chemistry of materials

JF - Chemistry of materials

SN - 0897-4756

IS - 5

ER -