Details
Original language | English |
---|---|
Article number | e14611 |
Journal | Physiologia Plantarum |
Volume | 176 |
Issue number | 6 |
Publication status | Published - 11 Nov 2024 |
Abstract
Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. ‘Ruby Queen’ and ‘Scarlet Supreme’) and white beet (‘Rodeo’ and ‘Ansa’) cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na+ concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K+ and Ca2+ concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na+, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Physiology
- Biochemistry, Genetics and Molecular Biology(all)
- Genetics
- Agricultural and Biological Sciences(all)
- Plant Science
- Biochemistry, Genetics and Molecular Biology(all)
- Cell Biology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physiologia Plantarum, Vol. 176, No. 6, e14611, 11.11.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars
AU - Colak, Nesrin
AU - Slatnar, Ana
AU - Medic, Aljaz
AU - Torun, Hülya
AU - Kurt-Celebi, Aynur
AU - Dräger, Gerald
AU - Djahandideh, Jasmin
AU - Esatbeyoglu, Tuba
AU - Ayaz, Faik Ahmet
N1 - Publisher Copyright: © 2024 Scandinavian Plant Physiology Society.
PY - 2024/11/11
Y1 - 2024/11/11
N2 - Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. ‘Ruby Queen’ and ‘Scarlet Supreme’) and white beet (‘Rodeo’ and ‘Ansa’) cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na+ concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K+ and Ca2+ concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na+, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.
AB - Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. ‘Ruby Queen’ and ‘Scarlet Supreme’) and white beet (‘Rodeo’ and ‘Ansa’) cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na+ concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K+ and Ca2+ concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na+, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.
UR - http://www.scopus.com/inward/record.url?scp=85208815539&partnerID=8YFLogxK
U2 - 10.1111/ppl.14611
DO - 10.1111/ppl.14611
M3 - Article
C2 - 39528361
AN - SCOPUS:85208815539
VL - 176
JO - Physiologia Plantarum
JF - Physiologia Plantarum
SN - 0031-9317
IS - 6
M1 - e14611
ER -