Details
Original language | English |
---|---|
Pages (from-to) | 60-67 |
Number of pages | 8 |
Journal | Biochimica et Biophysica Acta - Bioenergetics |
Volume | 1787 |
Issue number | 1 |
Publication status | Published - 13 Nov 2008 |
Abstract
The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V2). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I + III2, III2 + IV1, V2, I + III2 + IV1 and I2 + III2 in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I2 + III2 + IV2 supercomplex, could be determined in a coherent way. The maps also show that the I + III2 + IV1 supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I2 + III2 + IV2 units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.
Keywords
- Electron microscopy, Respiratory string, Respiratory supercomplex, Single particle analysis
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biophysics
- Biochemistry, Genetics and Molecular Biology(all)
- Biochemistry
- Biochemistry, Genetics and Molecular Biology(all)
- Cell Biology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Biochimica et Biophysica Acta - Bioenergetics, Vol. 1787, No. 1, 13.11.2008, p. 60-67.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato
AU - Bultema, Jelle B.
AU - Braun, Hans Peter
AU - Boekema, Egbert J.
AU - Kouřil, Roman
PY - 2008/11/13
Y1 - 2008/11/13
N2 - The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V2). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I + III2, III2 + IV1, V2, I + III2 + IV1 and I2 + III2 in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I2 + III2 + IV2 supercomplex, could be determined in a coherent way. The maps also show that the I + III2 + IV1 supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I2 + III2 + IV2 units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.
AB - The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V2). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I + III2, III2 + IV1, V2, I + III2 + IV1 and I2 + III2 in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I2 + III2 + IV2 supercomplex, could be determined in a coherent way. The maps also show that the I + III2 + IV1 supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I2 + III2 + IV2 units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.
KW - Electron microscopy
KW - Respiratory string
KW - Respiratory supercomplex
KW - Single particle analysis
UR - http://www.scopus.com/inward/record.url?scp=57649211340&partnerID=8YFLogxK
U2 - 10.1016/j.bbabio.2008.10.010
DO - 10.1016/j.bbabio.2008.10.010
M3 - Article
C2 - 19059196
AN - SCOPUS:57649211340
VL - 1787
SP - 60
EP - 67
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
SN - 0005-2728
IS - 1
ER -