Details
Original language | English |
---|---|
Pages (from-to) | 3069-3078 |
Number of pages | 10 |
Journal | Proceedings of the American Mathematical Society |
Volume | 136 |
Issue number | 9 |
Publication status | Published - Sept 2008 |
Abstract
Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Proceedings of the American Mathematical Society, Vol. 136, No. 9, 09.2008, p. 3069-3078.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Maximal n-orthogonal modules for selfinjective algebras
AU - Erdmann, Karin
AU - Holm, Thorsten
PY - 2008/9
Y1 - 2008/9
N2 - Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
AB - Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
UR - http://www.scopus.com/inward/record.url?scp=63349106699&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-08-09297-6
DO - 10.1090/S0002-9939-08-09297-6
M3 - Article
AN - SCOPUS:63349106699
VL - 136
SP - 3069
EP - 3078
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
IS - 9
ER -