Details
Original language | English |
---|---|
Pages (from-to) | 67-73 |
Number of pages | 7 |
Journal | Chemical geology |
Volume | 268 |
Issue number | 1-2 |
Early online date | 3 Aug 2009 |
Publication status | Published - 20 Oct 2009 |
Abstract
UV femtosecond laser ablation coupled to MC-ICP-MS provides a promising in situ tool to investigate elemental and isotope ratios by non-matrix-matched calibration. In this study, we investigate Fe isotope composition in siliceous matrices including biotite, hornblende, garnet, fayalite and forsterite (San Carlos Olivine), and an oceanic Fe-Mn crust using the iron reference material IRMM-014 for calibration. To test the accuracy of the laser ablation data, Fe isotope compositions were obtained independently by solution ICP-MS after chromatographic separation of Fe. Sample materials with low Cr content, i.e. biotite, hornblende, fayalite and the Fe-Mn crust, reveal δ56/54Fe and δ57/54Fe values that agree with those from solution ICP-MS data within the measured precision. For high Cr concentration (54Cr/54Fe >0.0001), i.e. in the garnet and forsterite sample, δ56/54Fe and δ57/54Fe values were derived from 57Fe/56Fe ratios as correction of the isobaric interference of 54Cr on 54Fe is unsatisfactory. This approach provides accurate results for both minerals. Moreover, the garnet crystal exhibits isotopic zonation with differences of 0.3‰ in δ56/54Fe showing that substantial heterogeneities exist in high-temperature metamorphic minerals. Multiple analyses of homogeneous sample materials reveal a repeatability of 0.1‰ (2 SD) for δ56/54Fe and 0.2‰ (2 SD) for δ57/54Fe, respectively. This study adds to the observations of Horn et al. (2006) who have shown that the determination of Fe isotope ratios in various matrices including iron alloys, iron oxides and hydroxides, iron sulfide and iron carbonates can be performed with high accuracy and precision at high spatial resolution using UV femtosecond laser ablation ICP-MS. These results demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-independent method, which provides a substantial advantage over commonly employed nanosecond laser ablation systems.
Keywords
- Femtosecond laser ablation, Iron isotopes, MC-ICP-MS, Silicates
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geology
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Chemical geology, Vol. 268, No. 1-2, 20.10.2009, p. 67-73.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Matrix-independent Fe isotope ratio determination in silicates using UV femtosecond laser ablation
AU - Steinhoefel, Grit
AU - Horn, Ingo
AU - von Blanckenburg, Friedhelm
N1 - Acknowledgements: We appreciate the support of this research by the DFG and New Wave Research. G.S. is grateful for a scholarship from the Leibniz University of Hannover. I. Villa provided the biotite sample B-4B.
PY - 2009/10/20
Y1 - 2009/10/20
N2 - UV femtosecond laser ablation coupled to MC-ICP-MS provides a promising in situ tool to investigate elemental and isotope ratios by non-matrix-matched calibration. In this study, we investigate Fe isotope composition in siliceous matrices including biotite, hornblende, garnet, fayalite and forsterite (San Carlos Olivine), and an oceanic Fe-Mn crust using the iron reference material IRMM-014 for calibration. To test the accuracy of the laser ablation data, Fe isotope compositions were obtained independently by solution ICP-MS after chromatographic separation of Fe. Sample materials with low Cr content, i.e. biotite, hornblende, fayalite and the Fe-Mn crust, reveal δ56/54Fe and δ57/54Fe values that agree with those from solution ICP-MS data within the measured precision. For high Cr concentration (54Cr/54Fe >0.0001), i.e. in the garnet and forsterite sample, δ56/54Fe and δ57/54Fe values were derived from 57Fe/56Fe ratios as correction of the isobaric interference of 54Cr on 54Fe is unsatisfactory. This approach provides accurate results for both minerals. Moreover, the garnet crystal exhibits isotopic zonation with differences of 0.3‰ in δ56/54Fe showing that substantial heterogeneities exist in high-temperature metamorphic minerals. Multiple analyses of homogeneous sample materials reveal a repeatability of 0.1‰ (2 SD) for δ56/54Fe and 0.2‰ (2 SD) for δ57/54Fe, respectively. This study adds to the observations of Horn et al. (2006) who have shown that the determination of Fe isotope ratios in various matrices including iron alloys, iron oxides and hydroxides, iron sulfide and iron carbonates can be performed with high accuracy and precision at high spatial resolution using UV femtosecond laser ablation ICP-MS. These results demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-independent method, which provides a substantial advantage over commonly employed nanosecond laser ablation systems.
AB - UV femtosecond laser ablation coupled to MC-ICP-MS provides a promising in situ tool to investigate elemental and isotope ratios by non-matrix-matched calibration. In this study, we investigate Fe isotope composition in siliceous matrices including biotite, hornblende, garnet, fayalite and forsterite (San Carlos Olivine), and an oceanic Fe-Mn crust using the iron reference material IRMM-014 for calibration. To test the accuracy of the laser ablation data, Fe isotope compositions were obtained independently by solution ICP-MS after chromatographic separation of Fe. Sample materials with low Cr content, i.e. biotite, hornblende, fayalite and the Fe-Mn crust, reveal δ56/54Fe and δ57/54Fe values that agree with those from solution ICP-MS data within the measured precision. For high Cr concentration (54Cr/54Fe >0.0001), i.e. in the garnet and forsterite sample, δ56/54Fe and δ57/54Fe values were derived from 57Fe/56Fe ratios as correction of the isobaric interference of 54Cr on 54Fe is unsatisfactory. This approach provides accurate results for both minerals. Moreover, the garnet crystal exhibits isotopic zonation with differences of 0.3‰ in δ56/54Fe showing that substantial heterogeneities exist in high-temperature metamorphic minerals. Multiple analyses of homogeneous sample materials reveal a repeatability of 0.1‰ (2 SD) for δ56/54Fe and 0.2‰ (2 SD) for δ57/54Fe, respectively. This study adds to the observations of Horn et al. (2006) who have shown that the determination of Fe isotope ratios in various matrices including iron alloys, iron oxides and hydroxides, iron sulfide and iron carbonates can be performed with high accuracy and precision at high spatial resolution using UV femtosecond laser ablation ICP-MS. These results demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-independent method, which provides a substantial advantage over commonly employed nanosecond laser ablation systems.
KW - Femtosecond laser ablation
KW - Iron isotopes
KW - MC-ICP-MS
KW - Silicates
UR - http://www.scopus.com/inward/record.url?scp=70349446476&partnerID=8YFLogxK
U2 - 10.1016/j.chemgeo.2009.07.010
DO - 10.1016/j.chemgeo.2009.07.010
M3 - Article
AN - SCOPUS:70349446476
VL - 268
SP - 67
EP - 73
JO - Chemical geology
JF - Chemical geology
SN - 0009-2541
IS - 1-2
ER -