Masonry failure and debris throw characteristics under dynamic blast loads

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Fraunhofer Institute for High-Speed Dynamics, Ernst Mach Institute (EMI)
View graph of relations

Details

Original languageEnglish
Pages (from-to)217-222
Number of pages6
JournalChemical Engineering Transactions
Volume77
Publication statusPublished - 30 Sept 2019
Externally publishedYes

Abstract

The hazard to persons and structures derived from secondary explosion effects, associated with blast loads on structural components resulting in e.g. debris throw, may exceed the hazard range from the blast wave itself. The debris throw hazard potential is related to the initial fragment throw parameters as launch velocities, angles and masses during the structural failure. These parameters strongly depend on the overpressure characteristics of the explosion, controlled by the explosive amount and category resulting in either detonations (typically high-order explosives, e.g. TNT or ANFO) or deflagrations (typically low-order explosives, as e.g. gas-air mixtures or propellants). Detonation shock fronts are typically characterized by very fast propagation velocities (supersonic), high peak overpressures and a small spatial extent. In contrast, the deflagration shock front propagates much slower (subsonic) and is characterized by lower peak overpressures but a larger spatial extent. Understanding the break-up process during the structural failure and the resultant initial fragment throw characteristics, related to the loading conditions (explosive amount and category), is thus essential to assess the hazard potential from explosions and provide the basis for proper consequence modelling in risk analyses. However, the data basis for hazard assessment and model development on debris throw from masonry structures is still very limited. This contribution describes recent shock-tube experiments with the goal to characterize the hazard from single span masonry walls subjected to dynamic blast loads with pressure-time characteristics of typical high-order explosions. Based on stereo high-speed video images and computer vision techniques, we analysed the masonry break-up process and derived debris fragment trajectories, velocities, launch angles and mass distributions. Based on the observed debris throw characteristics, approaches for hazard assessment of masonry failure are described in order to discuss the transferability of the results with respect to the different loading characteristics of low-order explosions and the structural component.

Cite this

Masonry failure and debris throw characteristics under dynamic blast loads. / Schneider, J.M.; von Ramin, M.; Stottmeister, A. et al.
In: Chemical Engineering Transactions, Vol. 77, 30.09.2019, p. 217-222.

Research output: Contribution to journalArticleResearchpeer review

Schneider, JM, von Ramin, M, Stottmeister, A & Stolz, A 2019, 'Masonry failure and debris throw characteristics under dynamic blast loads', Chemical Engineering Transactions, vol. 77, pp. 217-222. https://doi.org/10.3303/CET1977037
Schneider, J. M., von Ramin, M., Stottmeister, A., & Stolz, A. (2019). Masonry failure and debris throw characteristics under dynamic blast loads. Chemical Engineering Transactions, 77, 217-222. https://doi.org/10.3303/CET1977037
Schneider JM, von Ramin M, Stottmeister A, Stolz A. Masonry failure and debris throw characteristics under dynamic blast loads. Chemical Engineering Transactions. 2019 Sept 30;77:217-222. doi: 10.3303/CET1977037
Schneider, J.M. ; von Ramin, M. ; Stottmeister, A. et al. / Masonry failure and debris throw characteristics under dynamic blast loads. In: Chemical Engineering Transactions. 2019 ; Vol. 77. pp. 217-222.
Download
@article{92801bdf372c41c5a14aeda7950bbe75,
title = "Masonry failure and debris throw characteristics under dynamic blast loads",
abstract = "The hazard to persons and structures derived from secondary explosion effects, associated with blast loads on structural components resulting in e.g. debris throw, may exceed the hazard range from the blast wave itself. The debris throw hazard potential is related to the initial fragment throw parameters as launch velocities, angles and masses during the structural failure. These parameters strongly depend on the overpressure characteristics of the explosion, controlled by the explosive amount and category resulting in either detonations (typically high-order explosives, e.g. TNT or ANFO) or deflagrations (typically low-order explosives, as e.g. gas-air mixtures or propellants). Detonation shock fronts are typically characterized by very fast propagation velocities (supersonic), high peak overpressures and a small spatial extent. In contrast, the deflagration shock front propagates much slower (subsonic) and is characterized by lower peak overpressures but a larger spatial extent. Understanding the break-up process during the structural failure and the resultant initial fragment throw characteristics, related to the loading conditions (explosive amount and category), is thus essential to assess the hazard potential from explosions and provide the basis for proper consequence modelling in risk analyses. However, the data basis for hazard assessment and model development on debris throw from masonry structures is still very limited. This contribution describes recent shock-tube experiments with the goal to characterize the hazard from single span masonry walls subjected to dynamic blast loads with pressure-time characteristics of typical high-order explosions. Based on stereo high-speed video images and computer vision techniques, we analysed the masonry break-up process and derived debris fragment trajectories, velocities, launch angles and mass distributions. Based on the observed debris throw characteristics, approaches for hazard assessment of masonry failure are described in order to discuss the transferability of the results with respect to the different loading characteristics of low-order explosions and the structural component.",
author = "J.M. Schneider and {von Ramin}, M. and A. Stottmeister and A. Stolz",
year = "2019",
month = sep,
day = "30",
doi = "10.3303/CET1977037",
language = "English",
volume = "77",
pages = "217--222",

}

Download

TY - JOUR

T1 - Masonry failure and debris throw characteristics under dynamic blast loads

AU - Schneider, J.M.

AU - von Ramin, M.

AU - Stottmeister, A.

AU - Stolz, A.

PY - 2019/9/30

Y1 - 2019/9/30

N2 - The hazard to persons and structures derived from secondary explosion effects, associated with blast loads on structural components resulting in e.g. debris throw, may exceed the hazard range from the blast wave itself. The debris throw hazard potential is related to the initial fragment throw parameters as launch velocities, angles and masses during the structural failure. These parameters strongly depend on the overpressure characteristics of the explosion, controlled by the explosive amount and category resulting in either detonations (typically high-order explosives, e.g. TNT or ANFO) or deflagrations (typically low-order explosives, as e.g. gas-air mixtures or propellants). Detonation shock fronts are typically characterized by very fast propagation velocities (supersonic), high peak overpressures and a small spatial extent. In contrast, the deflagration shock front propagates much slower (subsonic) and is characterized by lower peak overpressures but a larger spatial extent. Understanding the break-up process during the structural failure and the resultant initial fragment throw characteristics, related to the loading conditions (explosive amount and category), is thus essential to assess the hazard potential from explosions and provide the basis for proper consequence modelling in risk analyses. However, the data basis for hazard assessment and model development on debris throw from masonry structures is still very limited. This contribution describes recent shock-tube experiments with the goal to characterize the hazard from single span masonry walls subjected to dynamic blast loads with pressure-time characteristics of typical high-order explosions. Based on stereo high-speed video images and computer vision techniques, we analysed the masonry break-up process and derived debris fragment trajectories, velocities, launch angles and mass distributions. Based on the observed debris throw characteristics, approaches for hazard assessment of masonry failure are described in order to discuss the transferability of the results with respect to the different loading characteristics of low-order explosions and the structural component.

AB - The hazard to persons and structures derived from secondary explosion effects, associated with blast loads on structural components resulting in e.g. debris throw, may exceed the hazard range from the blast wave itself. The debris throw hazard potential is related to the initial fragment throw parameters as launch velocities, angles and masses during the structural failure. These parameters strongly depend on the overpressure characteristics of the explosion, controlled by the explosive amount and category resulting in either detonations (typically high-order explosives, e.g. TNT or ANFO) or deflagrations (typically low-order explosives, as e.g. gas-air mixtures or propellants). Detonation shock fronts are typically characterized by very fast propagation velocities (supersonic), high peak overpressures and a small spatial extent. In contrast, the deflagration shock front propagates much slower (subsonic) and is characterized by lower peak overpressures but a larger spatial extent. Understanding the break-up process during the structural failure and the resultant initial fragment throw characteristics, related to the loading conditions (explosive amount and category), is thus essential to assess the hazard potential from explosions and provide the basis for proper consequence modelling in risk analyses. However, the data basis for hazard assessment and model development on debris throw from masonry structures is still very limited. This contribution describes recent shock-tube experiments with the goal to characterize the hazard from single span masonry walls subjected to dynamic blast loads with pressure-time characteristics of typical high-order explosions. Based on stereo high-speed video images and computer vision techniques, we analysed the masonry break-up process and derived debris fragment trajectories, velocities, launch angles and mass distributions. Based on the observed debris throw characteristics, approaches for hazard assessment of masonry failure are described in order to discuss the transferability of the results with respect to the different loading characteristics of low-order explosions and the structural component.

UR - http://www.scopus.com/inward/record.url?scp=85073455552&partnerID=8YFLogxK

U2 - 10.3303/CET1977037

DO - 10.3303/CET1977037

M3 - Article

VL - 77

SP - 217

EP - 222

JO - Chemical Engineering Transactions

JF - Chemical Engineering Transactions

SN - 2283-9216

ER -

By the same author(s)