Details
Original language | English |
---|---|
Article number | 898 |
Journal | Metals |
Volume | 8 |
Issue number | 11 |
Early online date | 2 Nov 2018 |
Publication status | Published - Nov 2018 |
Abstract
The present paper describes a new method concerning the production of hybrid bevel gears using the Tailored Forming technology. The main idea of the Tailored Forming involves the creation of bi-metal workpieces using a joining process prior to the forming step and targeted treatment of the resulting joint by thermo-mechanical processing during the subsequent forming at elevated temperatures. This improves the mechanical and geometrical properties of the joining zone. The aim is to produce components with a hybrid material system, where the high-quality and expensive material is located in highly stressed areas only. When used appropriately, it is possible to reduce costs by using fewer high-performance materials than in a component made of a single material. There is also the opportunity to significantly increase performance by combining special load-tailored high-performance materials. The core of the technology consists in the material-locking coating of semi-finished parts by means of plasma-transferred-arc welding (PTA) and subsequent forming. In the presented investigations, steel cylinders made of C22.8 are first coated with the higher-quality heat-treatable steel 41Cr4 using PTA-welding and then hot-formed in a forging process. It could be shown that the applied coating can be formed successfully by hot forging processes without suffering any damage or defects and that the previous weld structure is completely transformed into a homogeneous forming-typical structure. Thus, negative thermal influences of the welding process on the microstructure are completely neutralized.
Keywords
- Bi-metal bevel gear, Die forging, Hot deformation, Tailored forming
ASJC Scopus subject areas
- Materials Science(all)
- General Materials Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Metals, Vol. 8, No. 11, 898, 11.2018.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Manufacturing of High-Performance Bi-Metal Bevel Gears by Combined Deposition Welding and Forging
AU - Chugreeva, Anna
AU - Mildebrath, Maximilian
AU - Diefenbach, Julian
AU - Barroi, Alexander
AU - Lammers, Marius
AU - Hermsdorf, Jörg
AU - Hassel, Thomas
AU - Overmeyer, Ludger
AU - Behrens, Bernd Arno
N1 - Funding information: This research was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) within the framework of the Collaborative Research Centre (Sonderforschungsbereich SFB 1153, Projektnummer: 252662854, Teilprojekt A4, B2), which is promoted by the DFG.
PY - 2018/11
Y1 - 2018/11
N2 - The present paper describes a new method concerning the production of hybrid bevel gears using the Tailored Forming technology. The main idea of the Tailored Forming involves the creation of bi-metal workpieces using a joining process prior to the forming step and targeted treatment of the resulting joint by thermo-mechanical processing during the subsequent forming at elevated temperatures. This improves the mechanical and geometrical properties of the joining zone. The aim is to produce components with a hybrid material system, where the high-quality and expensive material is located in highly stressed areas only. When used appropriately, it is possible to reduce costs by using fewer high-performance materials than in a component made of a single material. There is also the opportunity to significantly increase performance by combining special load-tailored high-performance materials. The core of the technology consists in the material-locking coating of semi-finished parts by means of plasma-transferred-arc welding (PTA) and subsequent forming. In the presented investigations, steel cylinders made of C22.8 are first coated with the higher-quality heat-treatable steel 41Cr4 using PTA-welding and then hot-formed in a forging process. It could be shown that the applied coating can be formed successfully by hot forging processes without suffering any damage or defects and that the previous weld structure is completely transformed into a homogeneous forming-typical structure. Thus, negative thermal influences of the welding process on the microstructure are completely neutralized.
AB - The present paper describes a new method concerning the production of hybrid bevel gears using the Tailored Forming technology. The main idea of the Tailored Forming involves the creation of bi-metal workpieces using a joining process prior to the forming step and targeted treatment of the resulting joint by thermo-mechanical processing during the subsequent forming at elevated temperatures. This improves the mechanical and geometrical properties of the joining zone. The aim is to produce components with a hybrid material system, where the high-quality and expensive material is located in highly stressed areas only. When used appropriately, it is possible to reduce costs by using fewer high-performance materials than in a component made of a single material. There is also the opportunity to significantly increase performance by combining special load-tailored high-performance materials. The core of the technology consists in the material-locking coating of semi-finished parts by means of plasma-transferred-arc welding (PTA) and subsequent forming. In the presented investigations, steel cylinders made of C22.8 are first coated with the higher-quality heat-treatable steel 41Cr4 using PTA-welding and then hot-formed in a forging process. It could be shown that the applied coating can be formed successfully by hot forging processes without suffering any damage or defects and that the previous weld structure is completely transformed into a homogeneous forming-typical structure. Thus, negative thermal influences of the welding process on the microstructure are completely neutralized.
KW - Bi-metal bevel gear
KW - Die forging
KW - Hot deformation
KW - Tailored forming
UR - http://www.scopus.com/inward/record.url?scp=85056247399&partnerID=8YFLogxK
U2 - 10.3390/met8110898
DO - 10.3390/met8110898
M3 - Article
AN - SCOPUS:85056247399
VL - 8
JO - Metals
JF - Metals
SN - 2075-4701
IS - 11
M1 - 898
ER -