Magnetic trapping for an atom-chip-based gravimeter

Research output: ThesisDoctoral thesis

Authors

  • Jonas Matthias
View graph of relations

Details

Original languageEnglish
QualificationDoctor rerum naturalium
Awarding Institution
Supervised by
  • Ernst Maria Rasel, Supervisor
Date of Award4 Nov 2020
Place of PublicationHannover
Publication statusPublished - 2020

Abstract

In the past century, the development of gravimeters with low uncertainty and long-term stability has led to new fields of research in geodesy and geoscience. Decreasing the instrumental measurement uncertainty further will enable observations of previously inaccessible phenomena, for instance, mass transport in hydrology and volcanology. During the last decades, quantum sensors based on the interference of cold atoms have been developed. Using a cold atomic gas as test mass, the accuracy of these sensors is not limited by mechanical properties but by effects caused by the thermal expansion of the atomic ensemble. The application of ultra-cold atomic ensembles with lower expansion rates in atom interferometer gravimeters is projected to reduce the leading order uncertainties by more than an order of magnitude. At the same time, atom chip technology makes it possible to prepare ultra-cold atomic ensembles at a high repetition rate and to miniaturise the sensor size. These advancements promise the realisation of an absolute gravimeter with unprecedented accuracy. This thesis describes the design considerations and the assembly of the transportable Quantum Gravimeter (QG-1) based on light-pulse atom interferometry of Bose-Einstein condensates (BEC) prepared on an atom chip. It is estimated, that the two leading order uncertainties of systematic biases governing the instrumental measurement uncertainty of current generation cold atom gravimeters are reduced to less than 1 nm/s² in the QG-1 apparatus. The established design of an atom-chip-based BEC source pioneered in the Quantus collaboration is modified to meet the requirements of QG-1. A free optical aperture of 18 mm for the interferometry laser beam is realised by changing the orientation of the atom-chip-based BEC source. Therefore, a new layout of the mesoscopic wire structure of the atom chip is required. The design described in this thesis enables atom interferometry with a free falling test mass with a baseline of 330 mm. The retro-reflection mirror is placed inside the vacuum chamber to eliminate optical elements in the atom interferometer beam path. It is mounted on a custom designed tip/tilt-stage with compact size and a large dynamic range of up to a hundredfold of the Earth's rotation rate for characterisation. Furthermore, a compact, robust and transportable fibre based laser system with modular electronics and a computer control system are set up. The key result of this thesis is the reliable operation of the ultra-cold atomic source on the atom chip. After optimisation of the trap loading procedure for a high atom number and low excitation of oscillations, it was shown that the necessary design change of the atom chip allows for efficient operation. The compressed magnetic trap has a geometrically averaged trap frequency of 2π · 256 Hz and the trapped ensemble has a lifetime of 3.2 s. The evaporative cooling procedure starts with 3.3 · 10⁷ atoms at a temperature of 166 μK. Within 1.3 s, or 2.3 s for the complete sequence, 3000 atoms are prepared at a temperature of 160 nK close to the critical temperature for Bose-Einstein condensation.

Cite this

Magnetic trapping for an atom-chip-based gravimeter. / Matthias, Jonas.
Hannover, 2020. 95 p.

Research output: ThesisDoctoral thesis

Matthias, J 2020, 'Magnetic trapping for an atom-chip-based gravimeter', Doctor rerum naturalium, Leibniz University Hannover, Hannover. https://doi.org/10.15488/10196
Matthias, J. (2020). Magnetic trapping for an atom-chip-based gravimeter. [Doctoral thesis, Leibniz University Hannover]. https://doi.org/10.15488/10196
Matthias J. Magnetic trapping for an atom-chip-based gravimeter. Hannover, 2020. 95 p. doi: 10.15488/10196
Matthias, Jonas. / Magnetic trapping for an atom-chip-based gravimeter. Hannover, 2020. 95 p.
Download
@phdthesis{1259b8f9f2394075a4bdb143768104b8,
title = "Magnetic trapping for an atom-chip-based gravimeter",
abstract = "In the past century, the development of gravimeters with low uncertainty and long-term stability has led to new fields of research in geodesy and geoscience. Decreasing the instrumental measurement uncertainty further will enable observations of previously inaccessible phenomena, for instance, mass transport in hydrology and volcanology. During the last decades, quantum sensors based on the interference of cold atoms have been developed. Using a cold atomic gas as test mass, the accuracy of these sensors is not limited by mechanical properties but by effects caused by the thermal expansion of the atomic ensemble. The application of ultra-cold atomic ensembles with lower expansion rates in atom interferometer gravimeters is projected to reduce the leading order uncertainties by more than an order of magnitude. At the same time, atom chip technology makes it possible to prepare ultra-cold atomic ensembles at a high repetition rate and to miniaturise the sensor size. These advancements promise the realisation of an absolute gravimeter with unprecedented accuracy. This thesis describes the design considerations and the assembly of the transportable Quantum Gravimeter (QG-1) based on light-pulse atom interferometry of Bose-Einstein condensates (BEC) prepared on an atom chip. It is estimated, that the two leading order uncertainties of systematic biases governing the instrumental measurement uncertainty of current generation cold atom gravimeters are reduced to less than 1 nm/s² in the QG-1 apparatus. The established design of an atom-chip-based BEC source pioneered in the Quantus collaboration is modified to meet the requirements of QG-1. A free optical aperture of 18 mm for the interferometry laser beam is realised by changing the orientation of the atom-chip-based BEC source. Therefore, a new layout of the mesoscopic wire structure of the atom chip is required. The design described in this thesis enables atom interferometry with a free falling test mass with a baseline of 330 mm. The retro-reflection mirror is placed inside the vacuum chamber to eliminate optical elements in the atom interferometer beam path. It is mounted on a custom designed tip/tilt-stage with compact size and a large dynamic range of up to a hundredfold of the Earth's rotation rate for characterisation. Furthermore, a compact, robust and transportable fibre based laser system with modular electronics and a computer control system are set up. The key result of this thesis is the reliable operation of the ultra-cold atomic source on the atom chip. After optimisation of the trap loading procedure for a high atom number and low excitation of oscillations, it was shown that the necessary design change of the atom chip allows for efficient operation. The compressed magnetic trap has a geometrically averaged trap frequency of 2π · 256 Hz and the trapped ensemble has a lifetime of 3.2 s. The evaporative cooling procedure starts with 3.3 · 10⁷ atoms at a temperature of 166 μK. Within 1.3 s, or 2.3 s for the complete sequence, 3000 atoms are prepared at a temperature of 160 nK close to the critical temperature for Bose-Einstein condensation.",
author = "Jonas Matthias",
note = "Doctoral thesis",
year = "2020",
doi = "10.15488/10196",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Magnetic trapping for an atom-chip-based gravimeter

AU - Matthias, Jonas

N1 - Doctoral thesis

PY - 2020

Y1 - 2020

N2 - In the past century, the development of gravimeters with low uncertainty and long-term stability has led to new fields of research in geodesy and geoscience. Decreasing the instrumental measurement uncertainty further will enable observations of previously inaccessible phenomena, for instance, mass transport in hydrology and volcanology. During the last decades, quantum sensors based on the interference of cold atoms have been developed. Using a cold atomic gas as test mass, the accuracy of these sensors is not limited by mechanical properties but by effects caused by the thermal expansion of the atomic ensemble. The application of ultra-cold atomic ensembles with lower expansion rates in atom interferometer gravimeters is projected to reduce the leading order uncertainties by more than an order of magnitude. At the same time, atom chip technology makes it possible to prepare ultra-cold atomic ensembles at a high repetition rate and to miniaturise the sensor size. These advancements promise the realisation of an absolute gravimeter with unprecedented accuracy. This thesis describes the design considerations and the assembly of the transportable Quantum Gravimeter (QG-1) based on light-pulse atom interferometry of Bose-Einstein condensates (BEC) prepared on an atom chip. It is estimated, that the two leading order uncertainties of systematic biases governing the instrumental measurement uncertainty of current generation cold atom gravimeters are reduced to less than 1 nm/s² in the QG-1 apparatus. The established design of an atom-chip-based BEC source pioneered in the Quantus collaboration is modified to meet the requirements of QG-1. A free optical aperture of 18 mm for the interferometry laser beam is realised by changing the orientation of the atom-chip-based BEC source. Therefore, a new layout of the mesoscopic wire structure of the atom chip is required. The design described in this thesis enables atom interferometry with a free falling test mass with a baseline of 330 mm. The retro-reflection mirror is placed inside the vacuum chamber to eliminate optical elements in the atom interferometer beam path. It is mounted on a custom designed tip/tilt-stage with compact size and a large dynamic range of up to a hundredfold of the Earth's rotation rate for characterisation. Furthermore, a compact, robust and transportable fibre based laser system with modular electronics and a computer control system are set up. The key result of this thesis is the reliable operation of the ultra-cold atomic source on the atom chip. After optimisation of the trap loading procedure for a high atom number and low excitation of oscillations, it was shown that the necessary design change of the atom chip allows for efficient operation. The compressed magnetic trap has a geometrically averaged trap frequency of 2π · 256 Hz and the trapped ensemble has a lifetime of 3.2 s. The evaporative cooling procedure starts with 3.3 · 10⁷ atoms at a temperature of 166 μK. Within 1.3 s, or 2.3 s for the complete sequence, 3000 atoms are prepared at a temperature of 160 nK close to the critical temperature for Bose-Einstein condensation.

AB - In the past century, the development of gravimeters with low uncertainty and long-term stability has led to new fields of research in geodesy and geoscience. Decreasing the instrumental measurement uncertainty further will enable observations of previously inaccessible phenomena, for instance, mass transport in hydrology and volcanology. During the last decades, quantum sensors based on the interference of cold atoms have been developed. Using a cold atomic gas as test mass, the accuracy of these sensors is not limited by mechanical properties but by effects caused by the thermal expansion of the atomic ensemble. The application of ultra-cold atomic ensembles with lower expansion rates in atom interferometer gravimeters is projected to reduce the leading order uncertainties by more than an order of magnitude. At the same time, atom chip technology makes it possible to prepare ultra-cold atomic ensembles at a high repetition rate and to miniaturise the sensor size. These advancements promise the realisation of an absolute gravimeter with unprecedented accuracy. This thesis describes the design considerations and the assembly of the transportable Quantum Gravimeter (QG-1) based on light-pulse atom interferometry of Bose-Einstein condensates (BEC) prepared on an atom chip. It is estimated, that the two leading order uncertainties of systematic biases governing the instrumental measurement uncertainty of current generation cold atom gravimeters are reduced to less than 1 nm/s² in the QG-1 apparatus. The established design of an atom-chip-based BEC source pioneered in the Quantus collaboration is modified to meet the requirements of QG-1. A free optical aperture of 18 mm for the interferometry laser beam is realised by changing the orientation of the atom-chip-based BEC source. Therefore, a new layout of the mesoscopic wire structure of the atom chip is required. The design described in this thesis enables atom interferometry with a free falling test mass with a baseline of 330 mm. The retro-reflection mirror is placed inside the vacuum chamber to eliminate optical elements in the atom interferometer beam path. It is mounted on a custom designed tip/tilt-stage with compact size and a large dynamic range of up to a hundredfold of the Earth's rotation rate for characterisation. Furthermore, a compact, robust and transportable fibre based laser system with modular electronics and a computer control system are set up. The key result of this thesis is the reliable operation of the ultra-cold atomic source on the atom chip. After optimisation of the trap loading procedure for a high atom number and low excitation of oscillations, it was shown that the necessary design change of the atom chip allows for efficient operation. The compressed magnetic trap has a geometrically averaged trap frequency of 2π · 256 Hz and the trapped ensemble has a lifetime of 3.2 s. The evaporative cooling procedure starts with 3.3 · 10⁷ atoms at a temperature of 166 μK. Within 1.3 s, or 2.3 s for the complete sequence, 3000 atoms are prepared at a temperature of 160 nK close to the critical temperature for Bose-Einstein condensation.

U2 - 10.15488/10196

DO - 10.15488/10196

M3 - Doctoral thesis

CY - Hannover

ER -