Details
Original language | English |
---|---|
Pages (from-to) | 53-68 |
Number of pages | 16 |
Journal | Journal of biotechnology |
Volume | 106 |
Issue number | 1 |
Early online date | 23 Oct 2003 |
Publication status | Published - 5 Dec 2003 |
Abstract
A macrokinetic model for Pichia pastoris expressing recombinant human serum albumin is proposed. The model describes the balances of some key metabolites, ATP and NADH, during glycerol and methanol metabolism. In the glycerol growth phase, the metabolic pathways mainly include phosphorylation, glycolysis, tricarboxylic acid cycle, and respiratory chain. In the methanol growth phase, methanol is oxidized to formaldehyde at first. Then, while a part of formaldehyde is oxidized to formate, the rest is condensed with xylulose-5-monophosphate to form glyceraldehyde-3-phosphate, and further assimilated to form cell constituents. The metabolic pathways following glyceraldehyde-3-phosphate were assumed to be similar to those in the glycerol growth phase. Based on the model, the macrokinetic bioreaction rates such as the specific substrate consumption rate, the specific growth rate, the specific acetyl-CoA formation rate as well as the specific oxygen uptake rate are obtained. The specific substrate consumption rate and the specific growth rate are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, i.e., the medium volume, the concentrations of the biomass, the substrate, and the product, is set up. Experimental results demonstrate that the model can describe the cell growth and the protein production with reasonable accuracy.
Keywords
- Metabolic pathways, Pichia pastoris, Recombinant human serum albumin, Stoichiometric model
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biotechnology
- Chemical Engineering(all)
- Bioengineering
- Immunology and Microbiology(all)
- Applied Microbiology and Biotechnology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of biotechnology, Vol. 106, No. 1, 05.12.2003, p. 53-68.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance
AU - Ren, H. T.
AU - Yuan, J. Q.
AU - Bellgardt, K. H.
PY - 2003/12/5
Y1 - 2003/12/5
N2 - A macrokinetic model for Pichia pastoris expressing recombinant human serum albumin is proposed. The model describes the balances of some key metabolites, ATP and NADH, during glycerol and methanol metabolism. In the glycerol growth phase, the metabolic pathways mainly include phosphorylation, glycolysis, tricarboxylic acid cycle, and respiratory chain. In the methanol growth phase, methanol is oxidized to formaldehyde at first. Then, while a part of formaldehyde is oxidized to formate, the rest is condensed with xylulose-5-monophosphate to form glyceraldehyde-3-phosphate, and further assimilated to form cell constituents. The metabolic pathways following glyceraldehyde-3-phosphate were assumed to be similar to those in the glycerol growth phase. Based on the model, the macrokinetic bioreaction rates such as the specific substrate consumption rate, the specific growth rate, the specific acetyl-CoA formation rate as well as the specific oxygen uptake rate are obtained. The specific substrate consumption rate and the specific growth rate are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, i.e., the medium volume, the concentrations of the biomass, the substrate, and the product, is set up. Experimental results demonstrate that the model can describe the cell growth and the protein production with reasonable accuracy.
AB - A macrokinetic model for Pichia pastoris expressing recombinant human serum albumin is proposed. The model describes the balances of some key metabolites, ATP and NADH, during glycerol and methanol metabolism. In the glycerol growth phase, the metabolic pathways mainly include phosphorylation, glycolysis, tricarboxylic acid cycle, and respiratory chain. In the methanol growth phase, methanol is oxidized to formaldehyde at first. Then, while a part of formaldehyde is oxidized to formate, the rest is condensed with xylulose-5-monophosphate to form glyceraldehyde-3-phosphate, and further assimilated to form cell constituents. The metabolic pathways following glyceraldehyde-3-phosphate were assumed to be similar to those in the glycerol growth phase. Based on the model, the macrokinetic bioreaction rates such as the specific substrate consumption rate, the specific growth rate, the specific acetyl-CoA formation rate as well as the specific oxygen uptake rate are obtained. The specific substrate consumption rate and the specific growth rate are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, i.e., the medium volume, the concentrations of the biomass, the substrate, and the product, is set up. Experimental results demonstrate that the model can describe the cell growth and the protein production with reasonable accuracy.
KW - Metabolic pathways
KW - Pichia pastoris
KW - Recombinant human serum albumin
KW - Stoichiometric model
UR - http://www.scopus.com/inward/record.url?scp=0242662478&partnerID=8YFLogxK
U2 - 10.1016/j.jbiotec.2003.08.003
DO - 10.1016/j.jbiotec.2003.08.003
M3 - Article
C2 - 14636710
AN - SCOPUS:0242662478
VL - 106
SP - 53
EP - 68
JO - Journal of biotechnology
JF - Journal of biotechnology
SN - 0168-1656
IS - 1
ER -