Machine Learning in der adaptiven Fertigungssteuerung: Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Berend Denkena
  • Sören Wilmsmeier
  • Florian Winter

External Research Organisations

  • Fauser AG
View graph of relations

Details

Translated title of the contributionMachine learning potentials in adaptive manufacturing control
Original languageGerman
Pages (from-to)17-20
Number of pages4
JournalFabriksoftware
Volume24
Issue number3
Publication statusPublished - 2019

Abstract

In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Machine Learning in der adaptiven Fertigungssteuerung: Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne. / Denkena, Berend; Wilmsmeier, Sören; Winter, Florian.
In: Fabriksoftware, Vol. 24, No. 3, 2019, p. 17-20.

Research output: Contribution to journalArticleResearchpeer review

Denkena, Berend ; Wilmsmeier, Sören ; Winter, Florian. / Machine Learning in der adaptiven Fertigungssteuerung : Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne. In: Fabriksoftware. 2019 ; Vol. 24, No. 3. pp. 17-20.
Download
@article{ee4cde0021d84868b0fddc9315b610b9,
title = "Machine Learning in der adaptiven Fertigungssteuerung: Genetischer Algorithmus zur Bewertung alternativer Arbeitspl{\"a}ne",
abstract = "In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.",
keywords = "Genetic Algorithm, Machine Learning, Production Control",
author = "Berend Denkena and S{\"o}ren Wilmsmeier and Florian Winter",
year = "2019",
language = "Deutsch",
volume = "24",
pages = "17--20",
number = "3",

}

Download

TY - JOUR

T1 - Machine Learning in der adaptiven Fertigungssteuerung

T2 - Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne

AU - Denkena, Berend

AU - Wilmsmeier, Sören

AU - Winter, Florian

PY - 2019

Y1 - 2019

N2 - In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.

AB - In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.

KW - Genetic Algorithm

KW - Machine Learning

KW - Production Control

UR - http://www.scopus.com/inward/record.url?scp=85093943783&partnerID=8YFLogxK

M3 - Artikel

AN - SCOPUS:85093943783

VL - 24

SP - 17

EP - 20

JO - Fabriksoftware

JF - Fabriksoftware

SN - 2569-7692

IS - 3

ER -