Details
Original language | English |
---|---|
Article number | e0240405 |
Journal | PLoS ONE |
Volume | 15 |
Issue number | 10 |
Publication status | Published - 15 Oct 2020 |
Abstract
The liver is known to possess extensive regenerative capabilities, the processes and pathways of which are not fully understood. A necessary step towards a better understanding involves the analysis of regeneration on the microscopic level in the in vivo environment. We developed an evaluation method combining longitudinal imaging analysis in vivo with simultaneous manipulation on single cell level. An abdominal imaging window was implanted in vivo in Balb/C mice for recurrent imaging after implantation. Intravenous injection of Fluorescein Isothiocyanate (FITC)-Dextran was used for labelling of vessels and Rhodamine 6G for hepatocytes. Minimal cell injury was induced via ablation with a femtosecond laser system during simultaneous visualisation of targeted cells using multiphoton microscopy. High-resolution imaging in vivo on single cell level including re-localisation of ablated regions in follow-up measurements after 2–7 days was feasible. Targeted single cell manipulation using femtosecond laser pulses at peak intensities of 3–6.6 μJ led to enhancement of FITC-Dextran in the surrounding tissue. These reactions reached their maxima 5–15 minutes after ablation and were no longer detectable after 24 hours. The procedures were well tolerated by all animals. Multiphoton microscopy in vivo, combined with a femtosecond laser system for single cell manipulation provides a refined procedure for longitudinal evaluation of liver micro-regeneration in the same region of interest. Immediate reactions after cell ablation and tissue regeneration can be analysed.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: PLoS ONE, Vol. 15, No. 10, e0240405, 15.10.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Longitudinal imaging and femtosecond laser manipulation of the liver
T2 - How to generate and trace single-cell-resolved micro-damage in vivo
AU - DeTemple, Daphne E.
AU - Cammann, Sebastian
AU - Bahlmann, Julia
AU - Buettner, Manuela
AU - Heisterkamp, Alexander
AU - Vondran, Florian W.R.
AU - Kalies, Stefan K.
PY - 2020/10/15
Y1 - 2020/10/15
N2 - The liver is known to possess extensive regenerative capabilities, the processes and pathways of which are not fully understood. A necessary step towards a better understanding involves the analysis of regeneration on the microscopic level in the in vivo environment. We developed an evaluation method combining longitudinal imaging analysis in vivo with simultaneous manipulation on single cell level. An abdominal imaging window was implanted in vivo in Balb/C mice for recurrent imaging after implantation. Intravenous injection of Fluorescein Isothiocyanate (FITC)-Dextran was used for labelling of vessels and Rhodamine 6G for hepatocytes. Minimal cell injury was induced via ablation with a femtosecond laser system during simultaneous visualisation of targeted cells using multiphoton microscopy. High-resolution imaging in vivo on single cell level including re-localisation of ablated regions in follow-up measurements after 2–7 days was feasible. Targeted single cell manipulation using femtosecond laser pulses at peak intensities of 3–6.6 μJ led to enhancement of FITC-Dextran in the surrounding tissue. These reactions reached their maxima 5–15 minutes after ablation and were no longer detectable after 24 hours. The procedures were well tolerated by all animals. Multiphoton microscopy in vivo, combined with a femtosecond laser system for single cell manipulation provides a refined procedure for longitudinal evaluation of liver micro-regeneration in the same region of interest. Immediate reactions after cell ablation and tissue regeneration can be analysed.
AB - The liver is known to possess extensive regenerative capabilities, the processes and pathways of which are not fully understood. A necessary step towards a better understanding involves the analysis of regeneration on the microscopic level in the in vivo environment. We developed an evaluation method combining longitudinal imaging analysis in vivo with simultaneous manipulation on single cell level. An abdominal imaging window was implanted in vivo in Balb/C mice for recurrent imaging after implantation. Intravenous injection of Fluorescein Isothiocyanate (FITC)-Dextran was used for labelling of vessels and Rhodamine 6G for hepatocytes. Minimal cell injury was induced via ablation with a femtosecond laser system during simultaneous visualisation of targeted cells using multiphoton microscopy. High-resolution imaging in vivo on single cell level including re-localisation of ablated regions in follow-up measurements after 2–7 days was feasible. Targeted single cell manipulation using femtosecond laser pulses at peak intensities of 3–6.6 μJ led to enhancement of FITC-Dextran in the surrounding tissue. These reactions reached their maxima 5–15 minutes after ablation and were no longer detectable after 24 hours. The procedures were well tolerated by all animals. Multiphoton microscopy in vivo, combined with a femtosecond laser system for single cell manipulation provides a refined procedure for longitudinal evaluation of liver micro-regeneration in the same region of interest. Immediate reactions after cell ablation and tissue regeneration can be analysed.
UR - http://www.scopus.com/inward/record.url?scp=85092790396&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0240405
DO - 10.1371/journal.pone.0240405
M3 - Article
C2 - 33057345
AN - SCOPUS:85092790396
VL - 15
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 10
M1 - e0240405
ER -