LISA and its In-Flight Test Precursor SMART-2

Research output: Contribution to journalArticleResearchpeer review

Authors

  • S. Vitale
  • P. Bender
  • A. Brillet
  • S. Buchman
  • A. Cavalleri
  • M. Cerdonio
  • M. Cruise
  • C. Cutler
  • K. Danzmann
  • R. Dolesi
  • W. Folkner
  • A. Gianolio
  • Y. Jafry
  • G. Hasinger
  • G. Heinzel
  • C. Hogan
  • M. Hueller
  • J. Hough
  • S. Phinney
  • T. Prince
  • D. Richstone
  • D. Robertson
  • M. Rodrigues
  • A. Rüdiger
  • M. Sandford
  • R. Schilling
  • D. Shoemaker
  • B. Schutz
  • R. Stebbins
  • C. Stubbs
  • T. Sumner
  • K. Thorne
  • M. Tinto
  • P. Touboul
  • H. Ward
  • W. Weber
  • W. Winkler

Research Organisations

External Research Organisations

  • University of Trento
  • JILA
  • Observatoire de la Côte d’Azur (OCA)
  • Stanford University
  • University of Padova
  • University of Birmingham
  • Jet Propulsion Laboratory
  • European Space Research and Technology Centre (ESTEC)
  • Max Planck Institute for Extraterrestrial Physics (MPE)
  • University of Washington
  • University of Glasgow
  • California Institute of Caltech (Caltech)
  • University of Michigan
  • Office national d'études et de recherches aérospatiales (ONERA)
  • Max Planck Institute of Quantum Optics (MPQ)
  • Rutherford Appleton Laboratory
  • Massachusetts Institute of Technology
  • NASA Goddard Space Flight Center (NASA-GSFC)
  • Imperial College London
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
View graph of relations

Details

Original languageEnglish
Pages (from-to)209-216
Number of pages8
JournalNuclear Physics B - Proceedings Supplements
Volume110
Publication statusPublished - Jul 2002

Abstract

LISA will be the first space-borne gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz+1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive blackholes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3 × 10-15 ms-2/√Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2.

ASJC Scopus subject areas

Cite this

LISA and its In-Flight Test Precursor SMART-2. / Vitale, S.; Bender, P.; Brillet, A. et al.
In: Nuclear Physics B - Proceedings Supplements, Vol. 110, 07.2002, p. 209-216.

Research output: Contribution to journalArticleResearchpeer review

Vitale, S, Bender, P, Brillet, A, Buchman, S, Cavalleri, A, Cerdonio, M, Cruise, M, Cutler, C, Danzmann, K, Dolesi, R, Folkner, W, Gianolio, A, Jafry, Y, Hasinger, G, Heinzel, G, Hogan, C, Hueller, M, Hough, J, Phinney, S, Prince, T, Richstone, D, Robertson, D, Rodrigues, M, Rüdiger, A, Sandford, M, Schilling, R, Shoemaker, D, Schutz, B, Stebbins, R, Stubbs, C, Sumner, T, Thorne, K, Tinto, M, Touboul, P, Ward, H, Weber, W & Winkler, W 2002, 'LISA and its In-Flight Test Precursor SMART-2', Nuclear Physics B - Proceedings Supplements, vol. 110, pp. 209-216. https://doi.org/10.1016/s0920-5632(02)01484-6
Vitale, S., Bender, P., Brillet, A., Buchman, S., Cavalleri, A., Cerdonio, M., Cruise, M., Cutler, C., Danzmann, K., Dolesi, R., Folkner, W., Gianolio, A., Jafry, Y., Hasinger, G., Heinzel, G., Hogan, C., Hueller, M., Hough, J., Phinney, S., ... Winkler, W. (2002). LISA and its In-Flight Test Precursor SMART-2. Nuclear Physics B - Proceedings Supplements, 110, 209-216. https://doi.org/10.1016/s0920-5632(02)01484-6
Vitale S, Bender P, Brillet A, Buchman S, Cavalleri A, Cerdonio M et al. LISA and its In-Flight Test Precursor SMART-2. Nuclear Physics B - Proceedings Supplements. 2002 Jul;110:209-216. doi: 10.1016/s0920-5632(02)01484-6
Vitale, S. ; Bender, P. ; Brillet, A. et al. / LISA and its In-Flight Test Precursor SMART-2. In: Nuclear Physics B - Proceedings Supplements. 2002 ; Vol. 110. pp. 209-216.
Download
@article{24b76c72bb184018a94860c5f4025e0c,
title = "LISA and its In-Flight Test Precursor SMART-2",
abstract = "LISA will be the first space-borne gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz+1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive blackholes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3 × 10-15 ms-2/√Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2.",
author = "S. Vitale and P. Bender and A. Brillet and S. Buchman and A. Cavalleri and M. Cerdonio and M. Cruise and C. Cutler and K. Danzmann and R. Dolesi and W. Folkner and A. Gianolio and Y. Jafry and G. Hasinger and G. Heinzel and C. Hogan and M. Hueller and J. Hough and S. Phinney and T. Prince and D. Richstone and D. Robertson and M. Rodrigues and A. R{\"u}diger and M. Sandford and R. Schilling and D. Shoemaker and B. Schutz and R. Stebbins and C. Stubbs and T. Sumner and K. Thorne and M. Tinto and P. Touboul and H. Ward and W. Weber and W. Winkler",
year = "2002",
month = jul,
doi = "10.1016/s0920-5632(02)01484-6",
language = "English",
volume = "110",
pages = "209--216",

}

Download

TY - JOUR

T1 - LISA and its In-Flight Test Precursor SMART-2

AU - Vitale, S.

AU - Bender, P.

AU - Brillet, A.

AU - Buchman, S.

AU - Cavalleri, A.

AU - Cerdonio, M.

AU - Cruise, M.

AU - Cutler, C.

AU - Danzmann, K.

AU - Dolesi, R.

AU - Folkner, W.

AU - Gianolio, A.

AU - Jafry, Y.

AU - Hasinger, G.

AU - Heinzel, G.

AU - Hogan, C.

AU - Hueller, M.

AU - Hough, J.

AU - Phinney, S.

AU - Prince, T.

AU - Richstone, D.

AU - Robertson, D.

AU - Rodrigues, M.

AU - Rüdiger, A.

AU - Sandford, M.

AU - Schilling, R.

AU - Shoemaker, D.

AU - Schutz, B.

AU - Stebbins, R.

AU - Stubbs, C.

AU - Sumner, T.

AU - Thorne, K.

AU - Tinto, M.

AU - Touboul, P.

AU - Ward, H.

AU - Weber, W.

AU - Winkler, W.

PY - 2002/7

Y1 - 2002/7

N2 - LISA will be the first space-borne gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz+1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive blackholes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3 × 10-15 ms-2/√Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2.

AB - LISA will be the first space-borne gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz+1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive blackholes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3 × 10-15 ms-2/√Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2.

UR - http://www.scopus.com/inward/record.url?scp=0036666546&partnerID=8YFLogxK

U2 - 10.1016/s0920-5632(02)01484-6

DO - 10.1016/s0920-5632(02)01484-6

M3 - Article

AN - SCOPUS:0036666546

VL - 110

SP - 209

EP - 216

JO - Nuclear Physics B - Proceedings Supplements

JF - Nuclear Physics B - Proceedings Supplements

SN - 0920-5632

ER -