Details
Original language | English |
---|---|
Article number | 2272 |
Number of pages | 18 |
Journal | Sensors |
Volume | 24 |
Issue number | 7 |
Publication status | Published - 2 Apr 2024 |
Abstract
Relative radiometric normalization (RRN) is a critical pre-processing step that enables accurate comparisons of multitemporal remote-sensing (RS) images through unsupervised change detection. Although existing RRN methods generally have promising results in most cases, their effectiveness depends on specific conditions, especially in scenarios with land cover/land use (LULC) in image pairs in different locations. These methods often overlook these complexities, potentially introducing biases to RRN results, mainly because of the use of spatially aligned pseudo-invariant features (PIFs) for modeling. To address this, we introduce a location-independent RRN (LIRRN) method in this study that can automatically identify non-spatially matched PIFs based on brightness characteristics. Additionally, as a fast and coregistration-free model, LIRRN complements keypoint-based RRN for more accurate results in applications where coregistration is crucial. The LIRRN process starts with segmenting reference and subject images into dark, gray, and bright zones using the multi-Otsu threshold technique. PIFs are then efficiently extracted from each zone using nearest-distance-based image content matching without any spatial constraints. These PIFs construct a linear model during subject–image calibration on a band-by-band basis. The performance evaluation involved tests on five registered/unregistered bitemporal satellite images, comparing results from three conventional methods: histogram matching (HM), blockwise KAZE, and keypoint-based RRN algorithms. Experimental results consistently demonstrated LIRRN’s superior performance, particularly in handling unregistered datasets. LIRRN also exhibited faster execution times than blockwise KAZE and keypoint-based approaches while yielding results comparable to those of HM in estimating normalization coefficients. Combining LIRRN and keypoint-based RRN models resulted in even more accurate and reliable results, albeit with a slight lengthening of the computational time. To investigate and further develop LIRRN, its code, and some sample datasets are available at link in Data Availability Statement.
Keywords
- bitemporal multispectral images, change detection, location-independent RRN, pseudo-invariant features (PIFs), relative radiometric normalization (RRN), remote sensing (RS)
ASJC Scopus subject areas
- Chemistry(all)
- Analytical Chemistry
- Computer Science(all)
- Information Systems
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Biochemistry, Genetics and Molecular Biology(all)
- Biochemistry
- Physics and Astronomy(all)
- Instrumentation
- Engineering(all)
- Electrical and Electronic Engineering
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Sensors, Vol. 24, No. 7, 2272, 02.04.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - LIRRN
T2 - Location-Independent Relative Radiometric Normalization of Bitemporal Remote-Sensing Images
AU - Moghimi, Armin
AU - Sadeghi, Vahid
AU - Mohsenifar, Amin
AU - Celik, Turgay
AU - Mohammadzadeh, Ali
PY - 2024/4/2
Y1 - 2024/4/2
N2 - Relative radiometric normalization (RRN) is a critical pre-processing step that enables accurate comparisons of multitemporal remote-sensing (RS) images through unsupervised change detection. Although existing RRN methods generally have promising results in most cases, their effectiveness depends on specific conditions, especially in scenarios with land cover/land use (LULC) in image pairs in different locations. These methods often overlook these complexities, potentially introducing biases to RRN results, mainly because of the use of spatially aligned pseudo-invariant features (PIFs) for modeling. To address this, we introduce a location-independent RRN (LIRRN) method in this study that can automatically identify non-spatially matched PIFs based on brightness characteristics. Additionally, as a fast and coregistration-free model, LIRRN complements keypoint-based RRN for more accurate results in applications where coregistration is crucial. The LIRRN process starts with segmenting reference and subject images into dark, gray, and bright zones using the multi-Otsu threshold technique. PIFs are then efficiently extracted from each zone using nearest-distance-based image content matching without any spatial constraints. These PIFs construct a linear model during subject–image calibration on a band-by-band basis. The performance evaluation involved tests on five registered/unregistered bitemporal satellite images, comparing results from three conventional methods: histogram matching (HM), blockwise KAZE, and keypoint-based RRN algorithms. Experimental results consistently demonstrated LIRRN’s superior performance, particularly in handling unregistered datasets. LIRRN also exhibited faster execution times than blockwise KAZE and keypoint-based approaches while yielding results comparable to those of HM in estimating normalization coefficients. Combining LIRRN and keypoint-based RRN models resulted in even more accurate and reliable results, albeit with a slight lengthening of the computational time. To investigate and further develop LIRRN, its code, and some sample datasets are available at link in Data Availability Statement.
AB - Relative radiometric normalization (RRN) is a critical pre-processing step that enables accurate comparisons of multitemporal remote-sensing (RS) images through unsupervised change detection. Although existing RRN methods generally have promising results in most cases, their effectiveness depends on specific conditions, especially in scenarios with land cover/land use (LULC) in image pairs in different locations. These methods often overlook these complexities, potentially introducing biases to RRN results, mainly because of the use of spatially aligned pseudo-invariant features (PIFs) for modeling. To address this, we introduce a location-independent RRN (LIRRN) method in this study that can automatically identify non-spatially matched PIFs based on brightness characteristics. Additionally, as a fast and coregistration-free model, LIRRN complements keypoint-based RRN for more accurate results in applications where coregistration is crucial. The LIRRN process starts with segmenting reference and subject images into dark, gray, and bright zones using the multi-Otsu threshold technique. PIFs are then efficiently extracted from each zone using nearest-distance-based image content matching without any spatial constraints. These PIFs construct a linear model during subject–image calibration on a band-by-band basis. The performance evaluation involved tests on five registered/unregistered bitemporal satellite images, comparing results from three conventional methods: histogram matching (HM), blockwise KAZE, and keypoint-based RRN algorithms. Experimental results consistently demonstrated LIRRN’s superior performance, particularly in handling unregistered datasets. LIRRN also exhibited faster execution times than blockwise KAZE and keypoint-based approaches while yielding results comparable to those of HM in estimating normalization coefficients. Combining LIRRN and keypoint-based RRN models resulted in even more accurate and reliable results, albeit with a slight lengthening of the computational time. To investigate and further develop LIRRN, its code, and some sample datasets are available at link in Data Availability Statement.
KW - bitemporal multispectral images
KW - change detection
KW - location-independent RRN
KW - pseudo-invariant features (PIFs)
KW - relative radiometric normalization (RRN)
KW - remote sensing (RS)
UR - http://www.scopus.com/inward/record.url?scp=85190267397&partnerID=8YFLogxK
U2 - 10.3390/s24072272
DO - 10.3390/s24072272
M3 - Article
C2 - 38610483
AN - SCOPUS:85190267397
VL - 24
JO - Sensors
JF - Sensors
SN - 1424-3210
IS - 7
M1 - 2272
ER -