Linear Equations in Singular Moduli

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Yuri Bilu
  • Lars Kuhne

External Research Organisations

  • Universite de Bordeaux
View graph of relations

Details

Original languageEnglish
Pages (from-to)7617-7643
Number of pages27
JournalInternational Mathematics Research Notices
Volume2020
Issue number21
Early online date14 Sept 2018
Publication statusPublished - 1 Nov 2020

Abstract

We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.

ASJC Scopus subject areas

Cite this

Linear Equations in Singular Moduli. / Bilu, Yuri; Kuhne, Lars.
In: International Mathematics Research Notices, Vol. 2020, No. 21, 01.11.2020, p. 7617-7643.

Research output: Contribution to journalArticleResearchpeer review

Bilu Y, Kuhne L. Linear Equations in Singular Moduli. International Mathematics Research Notices. 2020 Nov 1;2020(21):7617-7643. Epub 2018 Sept 14. doi: 10.48550/arXiv.1712.04027, 10.1093/imrn/rny216
Bilu, Yuri ; Kuhne, Lars. / Linear Equations in Singular Moduli. In: International Mathematics Research Notices. 2020 ; Vol. 2020, No. 21. pp. 7617-7643.
Download
@article{074c7a4fce1045d2afa6b28a2a451882,
title = "Linear Equations in Singular Moduli",
abstract = "We establish an effective version of the Andr{\'e}-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of Andr{\'e}-Oort type for higher-dimensional varieties in products of modular curves.",
author = "Yuri Bilu and Lars Kuhne",
year = "2020",
month = nov,
day = "1",
doi = "10.48550/arXiv.1712.04027",
language = "English",
volume = "2020",
pages = "7617--7643",
journal = "International Mathematics Research Notices",
issn = "1073-7928",
publisher = "Oxford University Press",
number = "21",

}

Download

TY - JOUR

T1 - Linear Equations in Singular Moduli

AU - Bilu, Yuri

AU - Kuhne, Lars

PY - 2020/11/1

Y1 - 2020/11/1

N2 - We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.

AB - We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.

UR - http://www.scopus.com/inward/record.url?scp=85097449850&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1712.04027

DO - 10.48550/arXiv.1712.04027

M3 - Article

AN - SCOPUS:85097449850

VL - 2020

SP - 7617

EP - 7643

JO - International Mathematics Research Notices

JF - International Mathematics Research Notices

SN - 1073-7928

IS - 21

ER -