Details
Original language | English |
---|---|
Pages (from-to) | 7617-7643 |
Number of pages | 27 |
Journal | International Mathematics Research Notices |
Volume | 2020 |
Issue number | 21 |
Early online date | 14 Sept 2018 |
Publication status | Published - 1 Nov 2020 |
Abstract
We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Mathematics Research Notices, Vol. 2020, No. 21, 01.11.2020, p. 7617-7643.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Linear Equations in Singular Moduli
AU - Bilu, Yuri
AU - Kuhne, Lars
PY - 2020/11/1
Y1 - 2020/11/1
N2 - We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.
AB - We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.
UR - http://www.scopus.com/inward/record.url?scp=85097449850&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1712.04027
DO - 10.48550/arXiv.1712.04027
M3 - Article
AN - SCOPUS:85097449850
VL - 2020
SP - 7617
EP - 7643
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 21
ER -