Details
Original language | English |
---|---|
Pages (from-to) | 390-400 |
Number of pages | 11 |
Journal | Physica Status Solidi (A) Applications and Materials Science |
Volume | 209 |
Issue number | 2 |
Early online date | 1 Dec 2011 |
Publication status | Published - Feb 2012 |
Abstract
In semiconductor device modeling, it is common practice to approximate recombination via amphoteric defects by means of the Shockley-Read-Hall (SRH) theory. We show by means of a mathematically rigorous treatment that this approximation is only justified if: (i) the defect distribution of amphoteric defects is approximated by two equally-shaped energy distributions of acceptor- and donor-like defect states which are separated in energy by the effective correlation energy, (ii) the ratios of the capture cross-sections (CCS) of free carriers for charged and neutral defect states are strongly asymmetric, (iii) the correlation energy is positive, and (iv) the defect density has its maximum between the quasi-Fermi levels (QFLs) for the trapped carriers (TQFLs). In particular, we investigate this kind of SRH approximation for the case of injection-dependent recombination at the interface between crystalline silicon (c-Si) and amorphous silicon (a-Si:H), a system that has recently been used to passivate the surface of Si solar cells. It is shown that care must be taken when applying this SRH approximation at low excess carrier densities În, e.g., at pn-junctions between a-Si:H and c-Si or at low illumination levels, because the defect distributions may peak outside the TQFLs. We apply a self-consistent model, which includes the band bending in c-Si caused by both light-induced, trapped charges in the a-Si:H layer and at the a-Si/c-Si interface. We show that these trapped charges significantly influence the recombination rate and should be taken into account, as opposed to common practice.
Keywords
- amorphous silicon, amphoteric defects, Shockley-Read-Hall, solar cells
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Materials Science(all)
- Surfaces, Coatings and Films
- Engineering(all)
- Electrical and Electronic Engineering
- Materials Science(all)
- Materials Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physica Status Solidi (A) Applications and Materials Science, Vol. 209, No. 2, 02.2012, p. 390-400.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Limits to model amphoteric defect recombination via SRH statistics
AU - Brendel, R.
AU - Altermatt, Pietro P.
AU - Steingrube, Silke
PY - 2012/2
Y1 - 2012/2
N2 - In semiconductor device modeling, it is common practice to approximate recombination via amphoteric defects by means of the Shockley-Read-Hall (SRH) theory. We show by means of a mathematically rigorous treatment that this approximation is only justified if: (i) the defect distribution of amphoteric defects is approximated by two equally-shaped energy distributions of acceptor- and donor-like defect states which are separated in energy by the effective correlation energy, (ii) the ratios of the capture cross-sections (CCS) of free carriers for charged and neutral defect states are strongly asymmetric, (iii) the correlation energy is positive, and (iv) the defect density has its maximum between the quasi-Fermi levels (QFLs) for the trapped carriers (TQFLs). In particular, we investigate this kind of SRH approximation for the case of injection-dependent recombination at the interface between crystalline silicon (c-Si) and amorphous silicon (a-Si:H), a system that has recently been used to passivate the surface of Si solar cells. It is shown that care must be taken when applying this SRH approximation at low excess carrier densities În, e.g., at pn-junctions between a-Si:H and c-Si or at low illumination levels, because the defect distributions may peak outside the TQFLs. We apply a self-consistent model, which includes the band bending in c-Si caused by both light-induced, trapped charges in the a-Si:H layer and at the a-Si/c-Si interface. We show that these trapped charges significantly influence the recombination rate and should be taken into account, as opposed to common practice.
AB - In semiconductor device modeling, it is common practice to approximate recombination via amphoteric defects by means of the Shockley-Read-Hall (SRH) theory. We show by means of a mathematically rigorous treatment that this approximation is only justified if: (i) the defect distribution of amphoteric defects is approximated by two equally-shaped energy distributions of acceptor- and donor-like defect states which are separated in energy by the effective correlation energy, (ii) the ratios of the capture cross-sections (CCS) of free carriers for charged and neutral defect states are strongly asymmetric, (iii) the correlation energy is positive, and (iv) the defect density has its maximum between the quasi-Fermi levels (QFLs) for the trapped carriers (TQFLs). In particular, we investigate this kind of SRH approximation for the case of injection-dependent recombination at the interface between crystalline silicon (c-Si) and amorphous silicon (a-Si:H), a system that has recently been used to passivate the surface of Si solar cells. It is shown that care must be taken when applying this SRH approximation at low excess carrier densities În, e.g., at pn-junctions between a-Si:H and c-Si or at low illumination levels, because the defect distributions may peak outside the TQFLs. We apply a self-consistent model, which includes the band bending in c-Si caused by both light-induced, trapped charges in the a-Si:H layer and at the a-Si/c-Si interface. We show that these trapped charges significantly influence the recombination rate and should be taken into account, as opposed to common practice.
KW - amorphous silicon
KW - amphoteric defects
KW - Shockley-Read-Hall
KW - solar cells
UR - http://www.scopus.com/inward/record.url?scp=84856299083&partnerID=8YFLogxK
U2 - 10.1002/pssa.201127277
DO - 10.1002/pssa.201127277
M3 - Article
AN - SCOPUS:84856299083
VL - 209
SP - 390
EP - 400
JO - Physica Status Solidi (A) Applications and Materials Science
JF - Physica Status Solidi (A) Applications and Materials Science
SN - 0031-8965
IS - 2
ER -