Details
Original language | English |
---|---|
Article number | 110060 |
Journal | Solar Energy Materials and Solar Cells |
Volume | 201 |
Early online date | 26 Jul 2019 |
Publication status | Published - Oct 2019 |
Abstract
The effect of ‘Light and elevated Temperature Induced Degradation’ (LeTID) of the carrier lifetime is well known from multicrystalline silicon (mc-Si) wafers and solar cells. In this contribution, we perform a series of carrier lifetime measurements to examine, whether the same effect may also be observable in boron-doped Czochralski-grown silicon (Cz-Si). The Cz-Si samples of our study are illuminated (i) at room temperature, (ii) under standard regeneration conditions eliminating the boron-oxygen (BO) related defect (i.e. at 185 °C) and (iii) at a temperature of 80 °C, typical for the examination of the LeTID effect in mc-Si. We observe the typical decay of the carrier lifetime due to the activation of the BO-related defect. Beyond the BO degradation, applying standard solar cell processes, there is no indication for the activation of a second defect. On samples, whose surfaces are passivated by fired hydrogen-rich silicon nitride layers, an additional bulk lifetime degradation effect on a long timescale is observed in the Cz-Si material. However, defect generation rate and injection dependence of the lifetime suggest another defect type than the mc-Si-specific LeTID defect. We conclude that by applying processing steps that trigger LeTID in mc-Si, the same defect does not occur in the Cz-Si samples examined in this study. On a long timescale, however, a hitherto unknown type of defect is activated, which is different from the mc-Si-specific LeTID defect. A careful differentiation between the various kinds of recombination centres which may form during illumination at elevated temperatures is hence of utmost importance.
Keywords
- Boron-oxygen defect, Carrier lifetime, Czochralski-grown silicon, LeTID
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)
- Surfaces, Coatings and Films
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Solar Energy Materials and Solar Cells, Vol. 201, 110060, 10.2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Light-induced lifetime degradation effects at elevated temperature in Czochralski-grown silicon beyond boron-oxygen-related degradation
AU - Winter, Michael
AU - Walter, Dominic C.
AU - Bredemeier, Dennis
AU - Schmidt, Jan
N1 - Funding Information: This work was funded by the German State of Lower Saxony and the German Federal Ministry of Economics and Energy within the research project LIMES (Contract no. 0324204D ). The content is the responsibility of the authors.
PY - 2019/10
Y1 - 2019/10
N2 - The effect of ‘Light and elevated Temperature Induced Degradation’ (LeTID) of the carrier lifetime is well known from multicrystalline silicon (mc-Si) wafers and solar cells. In this contribution, we perform a series of carrier lifetime measurements to examine, whether the same effect may also be observable in boron-doped Czochralski-grown silicon (Cz-Si). The Cz-Si samples of our study are illuminated (i) at room temperature, (ii) under standard regeneration conditions eliminating the boron-oxygen (BO) related defect (i.e. at 185 °C) and (iii) at a temperature of 80 °C, typical for the examination of the LeTID effect in mc-Si. We observe the typical decay of the carrier lifetime due to the activation of the BO-related defect. Beyond the BO degradation, applying standard solar cell processes, there is no indication for the activation of a second defect. On samples, whose surfaces are passivated by fired hydrogen-rich silicon nitride layers, an additional bulk lifetime degradation effect on a long timescale is observed in the Cz-Si material. However, defect generation rate and injection dependence of the lifetime suggest another defect type than the mc-Si-specific LeTID defect. We conclude that by applying processing steps that trigger LeTID in mc-Si, the same defect does not occur in the Cz-Si samples examined in this study. On a long timescale, however, a hitherto unknown type of defect is activated, which is different from the mc-Si-specific LeTID defect. A careful differentiation between the various kinds of recombination centres which may form during illumination at elevated temperatures is hence of utmost importance.
AB - The effect of ‘Light and elevated Temperature Induced Degradation’ (LeTID) of the carrier lifetime is well known from multicrystalline silicon (mc-Si) wafers and solar cells. In this contribution, we perform a series of carrier lifetime measurements to examine, whether the same effect may also be observable in boron-doped Czochralski-grown silicon (Cz-Si). The Cz-Si samples of our study are illuminated (i) at room temperature, (ii) under standard regeneration conditions eliminating the boron-oxygen (BO) related defect (i.e. at 185 °C) and (iii) at a temperature of 80 °C, typical for the examination of the LeTID effect in mc-Si. We observe the typical decay of the carrier lifetime due to the activation of the BO-related defect. Beyond the BO degradation, applying standard solar cell processes, there is no indication for the activation of a second defect. On samples, whose surfaces are passivated by fired hydrogen-rich silicon nitride layers, an additional bulk lifetime degradation effect on a long timescale is observed in the Cz-Si material. However, defect generation rate and injection dependence of the lifetime suggest another defect type than the mc-Si-specific LeTID defect. We conclude that by applying processing steps that trigger LeTID in mc-Si, the same defect does not occur in the Cz-Si samples examined in this study. On a long timescale, however, a hitherto unknown type of defect is activated, which is different from the mc-Si-specific LeTID defect. A careful differentiation between the various kinds of recombination centres which may form during illumination at elevated temperatures is hence of utmost importance.
KW - Boron-oxygen defect
KW - Carrier lifetime
KW - Czochralski-grown silicon
KW - LeTID
UR - http://www.scopus.com/inward/record.url?scp=85069885314&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2019.110060
DO - 10.1016/j.solmat.2019.110060
M3 - Article
VL - 201
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
SN - 0927-0248
M1 - 110060
ER -