Details
Original language | English |
---|---|
Pages (from-to) | 29-36 |
Number of pages | 8 |
Journal | Energy Procedia |
Volume | 92 |
Publication status | Published - Aug 2016 |
Event | 6th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2016 - Chambery, France Duration: 7 Mar 2016 → 9 Mar 2016 |
Abstract
Kerfless epitaxial silicon from the porous silicon (PSI) process is a promising alternative for standard wafers. They allow the reduction of PV costs by combining high material quality at reduced production costs. We evaluate the minority carrier lifetime of p-type and n-type epitaxial silicon layers fabricated with the PSI process by means of photoconductance decay measurements. For p-type layers we observe a strong injection dependence of the lifetime that we attribute to bulk Shockley-Read-Hall (SRH) recombination. We determine two limiting defects K3.6 and K157 that describe the injection dependence of 9 samples grown in one batch. Defect K3.6 has a symmetry factor of k=3.6 and is similarly concentrated in all 9 investigated samples. Its concentration decreases upon high temperature processing with and without phosphorous diffusion. The defect K157 has a symmetry factor of k=157 and a higher concentration in samples with a higher porosity in the starting layer. As a consequence of the k-factors being larger than unity the identified defects are less detrimental in n-type silicon than p-type silicon. Accordingly, we fabricate n-type epitaxial layers for which we measure effective lifetimes up to 1330±130 μs at Δp = 1015 cm -3.
Keywords
- kerfless, lifetime, mono-epitaxy, Shockley-Read-Hall, silicon, symmetry factor
ASJC Scopus subject areas
- Energy(all)
- General Energy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Energy Procedia, Vol. 92, 08.2016, p. 29-36.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Lifetime Analysis for Defect Characterization in Kerfless Epitaxial Silicon from the Porous Silicon Process
AU - Gemmel, Catherin
AU - Hensen, Jan
AU - Kajari-Schröder, Sarah
AU - Brendel, Rolf
PY - 2016/8
Y1 - 2016/8
N2 - Kerfless epitaxial silicon from the porous silicon (PSI) process is a promising alternative for standard wafers. They allow the reduction of PV costs by combining high material quality at reduced production costs. We evaluate the minority carrier lifetime of p-type and n-type epitaxial silicon layers fabricated with the PSI process by means of photoconductance decay measurements. For p-type layers we observe a strong injection dependence of the lifetime that we attribute to bulk Shockley-Read-Hall (SRH) recombination. We determine two limiting defects K3.6 and K157 that describe the injection dependence of 9 samples grown in one batch. Defect K3.6 has a symmetry factor of k=3.6 and is similarly concentrated in all 9 investigated samples. Its concentration decreases upon high temperature processing with and without phosphorous diffusion. The defect K157 has a symmetry factor of k=157 and a higher concentration in samples with a higher porosity in the starting layer. As a consequence of the k-factors being larger than unity the identified defects are less detrimental in n-type silicon than p-type silicon. Accordingly, we fabricate n-type epitaxial layers for which we measure effective lifetimes up to 1330±130 μs at Δp = 1015 cm -3.
AB - Kerfless epitaxial silicon from the porous silicon (PSI) process is a promising alternative for standard wafers. They allow the reduction of PV costs by combining high material quality at reduced production costs. We evaluate the minority carrier lifetime of p-type and n-type epitaxial silicon layers fabricated with the PSI process by means of photoconductance decay measurements. For p-type layers we observe a strong injection dependence of the lifetime that we attribute to bulk Shockley-Read-Hall (SRH) recombination. We determine two limiting defects K3.6 and K157 that describe the injection dependence of 9 samples grown in one batch. Defect K3.6 has a symmetry factor of k=3.6 and is similarly concentrated in all 9 investigated samples. Its concentration decreases upon high temperature processing with and without phosphorous diffusion. The defect K157 has a symmetry factor of k=157 and a higher concentration in samples with a higher porosity in the starting layer. As a consequence of the k-factors being larger than unity the identified defects are less detrimental in n-type silicon than p-type silicon. Accordingly, we fabricate n-type epitaxial layers for which we measure effective lifetimes up to 1330±130 μs at Δp = 1015 cm -3.
KW - kerfless
KW - lifetime
KW - mono-epitaxy
KW - Shockley-Read-Hall
KW - silicon
KW - symmetry factor
UR - http://www.scopus.com/inward/record.url?scp=85014458449&partnerID=8YFLogxK
U2 - 10.1016/j.egypro.2016.07.006
DO - 10.1016/j.egypro.2016.07.006
M3 - Conference article
AN - SCOPUS:85014458449
VL - 92
SP - 29
EP - 36
JO - Energy Procedia
JF - Energy Procedia
SN - 1876-6102
T2 - 6th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2016
Y2 - 7 March 2016 through 9 March 2016
ER -