Details
Original language | English |
---|---|
Publication status | Published - 30 May 2022 |
Abstract
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Research output: Non-textual form › Software › Research
}
TY - ADVS
T1 - LEAFlood
T2 - Landscape and vEgetAtion-dependent Flood model (Version 1)
AU - Wübbelmann, Thea
AU - Förster, Kristian
PY - 2022/5/30
Y1 - 2022/5/30
N2 - The LEAFlood model (Landscape and vEgetAtion-dependent Flood model) is based on existing model components of the Catchment Modelling Framework (CMF, Kraft et al., 2011). It is in between a conceptual and physically-based, distributed, deterministic model. LEAFlood considers the hydrological processes of canopy interception, canopy evaporation, throughfall, soil infiltration and surface runoff. The geometry is created on the basis of an irregular polygon shapefile. The model is forced by meteorological data of rainfall, temperature, wind speed, relative humidity and solar radiation. The interception utilizes the Rutter approach. LAI, Interception capacity and canopy closure are required parameters. Depending on the canopy closure, the precipitation can either be intercepted in the canopy or fall directly to the ground. A canopy closure of 1 means all rain is intercepted and 0 indicates 100% throughfall. The soil consists of one soil layer with the Green-Ampt infiltration method and the Brooks-Corey Retention Curve. A multi soil layer approach can be adapted. The saturated conductivity can be set individual for each cell. Further soil defining parameters are the porosity and the saturated depth. The surface runoff follows the kinematic approach based on topography and surface roughness (Manning’s roughness coefficient). First release of LEAFlood in May 2022.
AB - The LEAFlood model (Landscape and vEgetAtion-dependent Flood model) is based on existing model components of the Catchment Modelling Framework (CMF, Kraft et al., 2011). It is in between a conceptual and physically-based, distributed, deterministic model. LEAFlood considers the hydrological processes of canopy interception, canopy evaporation, throughfall, soil infiltration and surface runoff. The geometry is created on the basis of an irregular polygon shapefile. The model is forced by meteorological data of rainfall, temperature, wind speed, relative humidity and solar radiation. The interception utilizes the Rutter approach. LAI, Interception capacity and canopy closure are required parameters. Depending on the canopy closure, the precipitation can either be intercepted in the canopy or fall directly to the ground. A canopy closure of 1 means all rain is intercepted and 0 indicates 100% throughfall. The soil consists of one soil layer with the Green-Ampt infiltration method and the Brooks-Corey Retention Curve. A multi soil layer approach can be adapted. The saturated conductivity can be set individual for each cell. Further soil defining parameters are the porosity and the saturated depth. The surface runoff follows the kinematic approach based on topography and surface roughness (Manning’s roughness coefficient). First release of LEAFlood in May 2022.
UR - https://zenodo.org/record/6594180
U2 - 10.5281/ZENODO.6594180
DO - 10.5281/ZENODO.6594180
M3 - Software
ER -