Details
Original language | English |
---|---|
Pages (from-to) | 91-109 |
Number of pages | 19 |
Journal | Quaternary science reviews |
Volume | 60 |
Early online date | 12 Dec 2012 |
Publication status | Published - 15 Jan 2013 |
Abstract
Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (∼14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.
Keywords
- Biostratigraphy, Climatic fluctuations, Elbe, Late Palaeolithic, Lateglacial, Palaeochannels, River system development
ASJC Scopus subject areas
- Environmental Science(all)
- Global and Planetary Change
- Agricultural and Biological Sciences(all)
- Ecology, Evolution, Behavior and Systematics
- Arts and Humanities(all)
- Archaeology
- Social Sciences(all)
- Archaeology
- Earth and Planetary Sciences(all)
- Geology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Quaternary science reviews, Vol. 60, 15.01.2013, p. 91-109.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes
AU - Turner, Falko
AU - Tolksdorf, Johann Friedrich
AU - Viehberg, Finn
AU - Schwalb, Antje
AU - Kaiser, Knut
AU - Bittmann, Felix
AU - von Bramann, Ullrich
AU - Pott, Richard
AU - Staesche, Ulrich
AU - Breest, Klaus
AU - Veil, Stephan
PY - 2013/1/15
Y1 - 2013/1/15
N2 - Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (∼14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.
AB - Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (∼14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.
KW - Biostratigraphy
KW - Climatic fluctuations
KW - Elbe
KW - Late Palaeolithic
KW - Lateglacial
KW - Palaeochannels
KW - River system development
UR - http://www.scopus.com/inward/record.url?scp=84870810103&partnerID=8YFLogxK
U2 - 10.1016/j.quascirev.2012.10.037
DO - 10.1016/j.quascirev.2012.10.037
M3 - Article
AN - SCOPUS:84870810103
VL - 60
SP - 91
EP - 109
JO - Quaternary science reviews
JF - Quaternary science reviews
SN - 0277-3791
ER -