Details
Original language | English |
---|---|
Article number | 085109 |
Journal | Physics of fluids |
Volume | 18 |
Issue number | 8 |
Publication status | Published - Aug 2006 |
Abstract
The settling process of suspended particles in the turbulent flow was investigated by analyzing the Lagrangian motion of a large number of particles in the ocean mixed layer simulated by large eddy simulation (LES), focusing on the role of Langmuir circulation (LC). At the beginning, particles released near the surface are swept down rapidly following the downward jets in the presence of LC, contrary to the case of the horizontally uniform downward propagation in the absence of it. The strong vertical mixing by LC keeps the particle concentration almost uniform after the initial period in the presence of LC, while its mean concentration continues to decrease through particle settling. Under the influence of turbulence in the ocean mixed layer, the particle settling velocity W is always smaller than ws, and W/ws decreases with decreasing ws/u*, where ws is the terminal velocity of a particle in the still fluid and u* is the frictional velocity. The presence of LC causes a further decrease of W ultimately, and the difference between the cases with and without LC is the largest at ws/u*∼1. The analysis of LES data reveals that particles spend more time in upward flows and that more particles tend to accumulate in the high vorticity region in the presence of LC. It suggests that particle trapping is more likely when the length scale of vortices is larger, which may lead to the decrease of W in the presence of LC. It was also found that the preferential concentration occurs away from the regions of high horizontal vorticity and divergence when ws/u*∼1.
ASJC Scopus subject areas
- Engineering(all)
- Computational Mechanics
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Mechanics of Materials
- Engineering(all)
- Mechanical Engineering
- Chemical Engineering(all)
- Fluid Flow and Transfer Processes
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physics of fluids, Vol. 18, No. 8, 085109, 08.2006.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Large eddy simulation of particle settling in the ocean mixed layer
AU - Noh, Y.
AU - Kang, I. S.
AU - Herold, M.
AU - Raasch, S.
N1 - Funding Information: This work was supported by the Korea Research Foundation (KRF-2003-015-C00684), KOSEF (International Cooperative Research Program), the supercomputing resources of the KISTI, and by the German Research Foundation (DFG) under Grant No. RA 617/7-1.
PY - 2006/8
Y1 - 2006/8
N2 - The settling process of suspended particles in the turbulent flow was investigated by analyzing the Lagrangian motion of a large number of particles in the ocean mixed layer simulated by large eddy simulation (LES), focusing on the role of Langmuir circulation (LC). At the beginning, particles released near the surface are swept down rapidly following the downward jets in the presence of LC, contrary to the case of the horizontally uniform downward propagation in the absence of it. The strong vertical mixing by LC keeps the particle concentration almost uniform after the initial period in the presence of LC, while its mean concentration continues to decrease through particle settling. Under the influence of turbulence in the ocean mixed layer, the particle settling velocity W is always smaller than ws, and W/ws decreases with decreasing ws/u*, where ws is the terminal velocity of a particle in the still fluid and u* is the frictional velocity. The presence of LC causes a further decrease of W ultimately, and the difference between the cases with and without LC is the largest at ws/u*∼1. The analysis of LES data reveals that particles spend more time in upward flows and that more particles tend to accumulate in the high vorticity region in the presence of LC. It suggests that particle trapping is more likely when the length scale of vortices is larger, which may lead to the decrease of W in the presence of LC. It was also found that the preferential concentration occurs away from the regions of high horizontal vorticity and divergence when ws/u*∼1.
AB - The settling process of suspended particles in the turbulent flow was investigated by analyzing the Lagrangian motion of a large number of particles in the ocean mixed layer simulated by large eddy simulation (LES), focusing on the role of Langmuir circulation (LC). At the beginning, particles released near the surface are swept down rapidly following the downward jets in the presence of LC, contrary to the case of the horizontally uniform downward propagation in the absence of it. The strong vertical mixing by LC keeps the particle concentration almost uniform after the initial period in the presence of LC, while its mean concentration continues to decrease through particle settling. Under the influence of turbulence in the ocean mixed layer, the particle settling velocity W is always smaller than ws, and W/ws decreases with decreasing ws/u*, where ws is the terminal velocity of a particle in the still fluid and u* is the frictional velocity. The presence of LC causes a further decrease of W ultimately, and the difference between the cases with and without LC is the largest at ws/u*∼1. The analysis of LES data reveals that particles spend more time in upward flows and that more particles tend to accumulate in the high vorticity region in the presence of LC. It suggests that particle trapping is more likely when the length scale of vortices is larger, which may lead to the decrease of W in the presence of LC. It was also found that the preferential concentration occurs away from the regions of high horizontal vorticity and divergence when ws/u*∼1.
UR - http://www.scopus.com/inward/record.url?scp=33748271287&partnerID=8YFLogxK
U2 - 10.1063/1.2337098
DO - 10.1063/1.2337098
M3 - Article
AN - SCOPUS:33748271287
VL - 18
JO - Physics of fluids
JF - Physics of fluids
SN - 1070-6631
IS - 8
M1 - 085109
ER -