KNN-Entwicklung in der Halbwarmumformung

Research output: Contribution to journalArticleResearchpeer review

Authors

View graph of relations

Details

Translated title of the contributionANN development in semi-hot forming
Original languageGerman
Pages (from-to)407-412
Number of pages6
JournalWT Werkstattstechnik
Volume113
Issue number10
Publication statusPublished - 2023

Abstract

The numerical representation of thermomechanical forming processes requires high computing power. This can be reduced by combining FE simulation and artificial neural networks (KNN), especially for processes involving forming and heat treatment. The article presents the development of a KNN to be used for predicting the material properties of an EN AW-7075 T6 alloy after cathodic dip painting depending on the forming history.

ASJC Scopus subject areas

Cite this

KNN-Entwicklung in der Halbwarmumformung. / Ramirez, D. Vasquez; Wester, H.; Uhe, J. et al.
In: WT Werkstattstechnik, Vol. 113, No. 10, 2023, p. 407-412.

Research output: Contribution to journalArticleResearchpeer review

Ramirez, DV, Wester, H, Uhe, J & Behrens, BA 2023, 'KNN-Entwicklung in der Halbwarmumformung', WT Werkstattstechnik, vol. 113, no. 10, pp. 407-412. https://doi.org/10.37544/1436-4980-2023-10-29
Ramirez, D. V., Wester, H., Uhe, J., & Behrens, B. A. (2023). KNN-Entwicklung in der Halbwarmumformung. WT Werkstattstechnik, 113(10), 407-412. https://doi.org/10.37544/1436-4980-2023-10-29
Ramirez DV, Wester H, Uhe J, Behrens BA. KNN-Entwicklung in der Halbwarmumformung. WT Werkstattstechnik. 2023;113(10):407-412. doi: 10.37544/1436-4980-2023-10-29
Ramirez, D. Vasquez ; Wester, H. ; Uhe, J. et al. / KNN-Entwicklung in der Halbwarmumformung. In: WT Werkstattstechnik. 2023 ; Vol. 113, No. 10. pp. 407-412.
Download
@article{d4d3cfe94e554c05b310e534c3c8223b,
title = "KNN-Entwicklung in der Halbwarmumformung",
abstract = "The numerical representation of thermomechanical forming processes requires high computing power. This can be reduced by combining FE simulation and artificial neural networks (KNN), especially for processes involving forming and heat treatment. The article presents the development of a KNN to be used for predicting the material properties of an EN AW-7075 T6 alloy after cathodic dip painting depending on the forming history.",
author = "Ramirez, {D. Vasquez} and H. Wester and J. Uhe and Behrens, {B. A.}",
note = "Funding Information: Die Autoren bedanken sich bei den Forschungsf{\"o}rderer, dem Bundesministerium f{\"u}r Wirtschaft und Energie. Die Finanzierung wurde von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) im Rahmen eines Programms f{\"u}r industrielle Gemeinschaftsforschung (IGF) unter der F{\"o}rder-kennziffer 21645N organisiert.",
year = "2023",
doi = "10.37544/1436-4980-2023-10-29",
language = "Deutsch",
volume = "113",
pages = "407--412",
number = "10",

}

Download

TY - JOUR

T1 - KNN-Entwicklung in der Halbwarmumformung

AU - Ramirez, D. Vasquez

AU - Wester, H.

AU - Uhe, J.

AU - Behrens, B. A.

N1 - Funding Information: Die Autoren bedanken sich bei den Forschungsförderer, dem Bundesministerium für Wirtschaft und Energie. Die Finanzierung wurde von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) im Rahmen eines Programms für industrielle Gemeinschaftsforschung (IGF) unter der Förder-kennziffer 21645N organisiert.

PY - 2023

Y1 - 2023

N2 - The numerical representation of thermomechanical forming processes requires high computing power. This can be reduced by combining FE simulation and artificial neural networks (KNN), especially for processes involving forming and heat treatment. The article presents the development of a KNN to be used for predicting the material properties of an EN AW-7075 T6 alloy after cathodic dip painting depending on the forming history.

AB - The numerical representation of thermomechanical forming processes requires high computing power. This can be reduced by combining FE simulation and artificial neural networks (KNN), especially for processes involving forming and heat treatment. The article presents the development of a KNN to be used for predicting the material properties of an EN AW-7075 T6 alloy after cathodic dip painting depending on the forming history.

UR - http://www.scopus.com/inward/record.url?scp=85177428837&partnerID=8YFLogxK

U2 - 10.37544/1436-4980-2023-10-29

DO - 10.37544/1436-4980-2023-10-29

M3 - Artikel

AN - SCOPUS:85177428837

VL - 113

SP - 407

EP - 412

JO - WT Werkstattstechnik

JF - WT Werkstattstechnik

SN - 1436-5006

IS - 10

ER -

By the same author(s)