Details
Translated title of the contribution | Climate-induced changes in flood runoff of the Aller-Leine catchment: A case study using HBV-IWW |
---|---|
Original language | German |
Pages (from-to) | 174-183 |
Number of pages | 10 |
Journal | Hydrologie und Wasserbewirtschaftung |
Volume | 59 |
Issue number | 4 |
Publication status | Published - 1 Jan 2015 |
Abstract
Analysing extreme runof events in climate impact studies is indispensable for future water management planning. However, the genesis of floods is a highly dynamic process, whose simulation involves major uncertainties, especially in climate impact studies. These uncertainties result from: (I) Biased climate model data serving as input data; (II) The short length of high-resolution records for the calibration of the hydrological model; (III) Diferent data types used for calibrating (generally observations) and applying (generally climate model data); and the (4) hydrological models. In this case study, a calibration strategy is presented which enables a more reliable estimation of flood frequency curves in climate impact studies. The strategy allows direct calibration of the hydrological model by means of the subsequently applied climate model input data. The investigation was carried out in 41 catchments of the Aller-Leine river basin. Apart from hourly observed data for the period 2003 to 2008, two runs of the regional climate model REMO (BFG and UBA) were additionally used as input data for the hydrological model. The results have shown that: (I) The presented calibration strategy allows in most cases a good (re-) calibration of the hydrological model; (II) According to the status quo, floods will, on average, increase in the Aller-Leine river basin; (III) The increase in floods notably applies to the remote future (2071-2100); (IV) The REMO runs BFG and UBA partially display differing change signals. Due to the great uncertainties inherent in the climate model data, it is recommended to use a larger ensemble of global and regional climate models and to apply several hydrological models, given that simulating extreme events is a major challenge both for models and modellers.
ASJC Scopus subject areas
- Environmental Science(all)
- Water Science and Technology
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Hydrologie und Wasserbewirtschaftung, Vol. 59, No. 4, 01.01.2015, p. 174-183.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Klimabedingte Änderung von Hochwasserabflüssen im Aller-Leine-Einzugsgebiet
T2 - eine Fallstudie mit HBV-IWW
AU - Wallner, Markus
AU - Haberlandt, Uwe
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Analysing extreme runof events in climate impact studies is indispensable for future water management planning. However, the genesis of floods is a highly dynamic process, whose simulation involves major uncertainties, especially in climate impact studies. These uncertainties result from: (I) Biased climate model data serving as input data; (II) The short length of high-resolution records for the calibration of the hydrological model; (III) Diferent data types used for calibrating (generally observations) and applying (generally climate model data); and the (4) hydrological models. In this case study, a calibration strategy is presented which enables a more reliable estimation of flood frequency curves in climate impact studies. The strategy allows direct calibration of the hydrological model by means of the subsequently applied climate model input data. The investigation was carried out in 41 catchments of the Aller-Leine river basin. Apart from hourly observed data for the period 2003 to 2008, two runs of the regional climate model REMO (BFG and UBA) were additionally used as input data for the hydrological model. The results have shown that: (I) The presented calibration strategy allows in most cases a good (re-) calibration of the hydrological model; (II) According to the status quo, floods will, on average, increase in the Aller-Leine river basin; (III) The increase in floods notably applies to the remote future (2071-2100); (IV) The REMO runs BFG and UBA partially display differing change signals. Due to the great uncertainties inherent in the climate model data, it is recommended to use a larger ensemble of global and regional climate models and to apply several hydrological models, given that simulating extreme events is a major challenge both for models and modellers.
AB - Analysing extreme runof events in climate impact studies is indispensable for future water management planning. However, the genesis of floods is a highly dynamic process, whose simulation involves major uncertainties, especially in climate impact studies. These uncertainties result from: (I) Biased climate model data serving as input data; (II) The short length of high-resolution records for the calibration of the hydrological model; (III) Diferent data types used for calibrating (generally observations) and applying (generally climate model data); and the (4) hydrological models. In this case study, a calibration strategy is presented which enables a more reliable estimation of flood frequency curves in climate impact studies. The strategy allows direct calibration of the hydrological model by means of the subsequently applied climate model input data. The investigation was carried out in 41 catchments of the Aller-Leine river basin. Apart from hourly observed data for the period 2003 to 2008, two runs of the regional climate model REMO (BFG and UBA) were additionally used as input data for the hydrological model. The results have shown that: (I) The presented calibration strategy allows in most cases a good (re-) calibration of the hydrological model; (II) According to the status quo, floods will, on average, increase in the Aller-Leine river basin; (III) The increase in floods notably applies to the remote future (2071-2100); (IV) The REMO runs BFG and UBA partially display differing change signals. Due to the great uncertainties inherent in the climate model data, it is recommended to use a larger ensemble of global and regional climate models and to apply several hydrological models, given that simulating extreme events is a major challenge both for models and modellers.
KW - Climate change
KW - Flood frequency
KW - Hydrological modelling
UR - http://www.scopus.com/inward/record.url?scp=84969799427&partnerID=8YFLogxK
U2 - 10.5675/HyWa_2015,4_4
DO - 10.5675/HyWa_2015,4_4
M3 - Artikel
AN - SCOPUS:84969799427
VL - 59
SP - 174
EP - 183
JO - Hydrologie und Wasserbewirtschaftung
JF - Hydrologie und Wasserbewirtschaftung
SN - 1439-1783
IS - 4
ER -