Details
Translated title of the contribution | KI-supported process monitoring in machining |
---|---|
Original language | German |
Pages (from-to) | 295-298 |
Number of pages | 4 |
Journal | Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online) |
Volume | 115 |
Issue number | 5 |
Publication status | Published - May 2020 |
Abstract
The continuously increasing digitalization caused by Industry 4.0 offers the potential to use the additionally collected process data for the development of new types of process monitoring systems. At the Institute of Production Engineering and Machine Tools, Leibniz University Hannover (IFW), intensive research is being performed on the use of AI-based systems in order to continuously improve process reliability and productivity.
ASJC Scopus subject areas
- Engineering(all)
- General Engineering
- Business, Management and Accounting(all)
- Strategy and Management
- Decision Sciences(all)
- Management Science and Operations Research
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online), Vol. 115, No. 5, 05.2020, p. 295-298.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - KI-gestützte Prozessüberwachung in der Zerspanung
AU - Denkena, Berend
AU - Bergmann, Benjamin
AU - Reimer, Svenja
AU - Schmidt, Alexander
AU - Stiehl, Tobias
AU - Witt, Matthias
N1 - Funding information: Die Autoren danken der Deutschen For-schungsgemeinschaft (DFG), sowie dem Bundesministerium für Wirtschaft und Energie (BMWi) für die Unterstützung der Projekte Intelligente Werkzeugmaschine (Projektnummer: 385522239), SFB1153-B5 (Projektnummer: 252662854)., WiZuBe (IGF Vorhaben Nr. 19882 N) und IIP-Ecosphere (Förderkennzeichen: 01MK20006A).
PY - 2020/5
Y1 - 2020/5
N2 - The continuously increasing digitalization caused by Industry 4.0 offers the potential to use the additionally collected process data for the development of new types of process monitoring systems. At the Institute of Production Engineering and Machine Tools, Leibniz University Hannover (IFW), intensive research is being performed on the use of AI-based systems in order to continuously improve process reliability and productivity.
AB - The continuously increasing digitalization caused by Industry 4.0 offers the potential to use the additionally collected process data for the development of new types of process monitoring systems. At the Institute of Production Engineering and Machine Tools, Leibniz University Hannover (IFW), intensive research is being performed on the use of AI-based systems in order to continuously improve process reliability and productivity.
UR - http://www.scopus.com/inward/record.url?scp=85091426268&partnerID=8YFLogxK
U2 - 10.3139/104.112282
DO - 10.3139/104.112282
M3 - Artikel
AN - SCOPUS:85091426268
VL - 115
SP - 295
EP - 298
JO - Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online)
JF - Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online)
SN - 0947-0085
IS - 5
ER -