Details
Original language | English |
---|---|
Pages (from-to) | 13-23 |
Number of pages | 11 |
Journal | Chemical geology |
Volume | 459 |
Publication status | Published - 25 May 2017 |
Abstract
Many floodplain soils worldwide are contaminated by present and past industrial and mining activities. During flooding redox potential decreases, triggering the release of dissolved and colloidal metals. We used an anaerobic microcosm incubation to simulate flooding of a carbonate-rich floodplain soil for 40 days. Soil solution samples were extracted to determine the release of dissolved (< 0.02 μm) and colloidal fractions (0.02–10 μm). We analyzed stable isotope ratios of colloidal and dissolved Fe and Cu representing two groups of metals with different release behavior; release of Fe was steadily increasing, while that of Cu peaked sharply after flooding and decreased afterwards. The temporal trend of δ56Fe values of total Fe in solution indicated dissimilatory iron reduction. The apparent isotopic fractionation between dissolved and colloidal Fe (Δ56Fedissolved-colloidal = δ56Fedissolved − δ56Fecolloidal) varied from 0.31 ± 0.04‰ to − 1.86 ± 0.26‰. Low δ56Fecolloidal (− 1.16 ± 0.04‰) values on day 4 of the experiment suggested colloid formation by precipitation of dissolved Fe, while the strong temporal variation in Δ56Fedissolved-colloidal indicated subsequent changes in colloid mineralogy, sorption to soil components and/or electron transfer-atom exchange. The variations in δ65Cu values (Δ65Cudissolved-colloidal from 0.81 ± 0.03‰ to 1.58 ± 0.09‰) are probably linked to the changing oxidation state of colloidal Cu. While at the beginning of the experiment colloidal Cu and solid soil Cu exchange, these systems decouple after the onset of sulfate reduction in the second half of the experiment. The experimental results fit well to findings from redoximorphic soils described in the literature and highlight the importance of colloids for metal release and the isotopic pattern in carbonatic soils.
Keywords
- Colloids, Copper, Iron, Redox processes, Soil, Stable metal isotopes
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geology
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Chemical geology, Vol. 459, 25.05.2017, p. 13-23.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Isotopic variation of dissolved and colloidal iron and copper in a carbonatic floodplain soil after experimental flooding
AU - Kusonwiriyawong, Charirat
AU - Bigalke, Moritz
AU - Abgottspon, Florian
AU - Lazarov, Marina
AU - Schuth, Stephan
AU - Weyer, Stefan
AU - Wilcke, Wolfgang
N1 - Funding information: We thank the group of Isotope Geology of the University of Berne, Klaus Mezger, Thomas Nägler, Igor Villa and Gabriela Balzer for access to the clean room and support. We thank the AE Michael Böttcher and the two reviewers Ryan Mathur and Jan Wiederhold for their constructive comments, which considerably improved the manuscript. We also thank the Agricultural Research Development Agency (Public Organization), ARDA, Thailand, for funding Charirat Kusonwiriyawong.
PY - 2017/5/25
Y1 - 2017/5/25
N2 - Many floodplain soils worldwide are contaminated by present and past industrial and mining activities. During flooding redox potential decreases, triggering the release of dissolved and colloidal metals. We used an anaerobic microcosm incubation to simulate flooding of a carbonate-rich floodplain soil for 40 days. Soil solution samples were extracted to determine the release of dissolved (< 0.02 μm) and colloidal fractions (0.02–10 μm). We analyzed stable isotope ratios of colloidal and dissolved Fe and Cu representing two groups of metals with different release behavior; release of Fe was steadily increasing, while that of Cu peaked sharply after flooding and decreased afterwards. The temporal trend of δ56Fe values of total Fe in solution indicated dissimilatory iron reduction. The apparent isotopic fractionation between dissolved and colloidal Fe (Δ56Fedissolved-colloidal = δ56Fedissolved − δ56Fecolloidal) varied from 0.31 ± 0.04‰ to − 1.86 ± 0.26‰. Low δ56Fecolloidal (− 1.16 ± 0.04‰) values on day 4 of the experiment suggested colloid formation by precipitation of dissolved Fe, while the strong temporal variation in Δ56Fedissolved-colloidal indicated subsequent changes in colloid mineralogy, sorption to soil components and/or electron transfer-atom exchange. The variations in δ65Cu values (Δ65Cudissolved-colloidal from 0.81 ± 0.03‰ to 1.58 ± 0.09‰) are probably linked to the changing oxidation state of colloidal Cu. While at the beginning of the experiment colloidal Cu and solid soil Cu exchange, these systems decouple after the onset of sulfate reduction in the second half of the experiment. The experimental results fit well to findings from redoximorphic soils described in the literature and highlight the importance of colloids for metal release and the isotopic pattern in carbonatic soils.
AB - Many floodplain soils worldwide are contaminated by present and past industrial and mining activities. During flooding redox potential decreases, triggering the release of dissolved and colloidal metals. We used an anaerobic microcosm incubation to simulate flooding of a carbonate-rich floodplain soil for 40 days. Soil solution samples were extracted to determine the release of dissolved (< 0.02 μm) and colloidal fractions (0.02–10 μm). We analyzed stable isotope ratios of colloidal and dissolved Fe and Cu representing two groups of metals with different release behavior; release of Fe was steadily increasing, while that of Cu peaked sharply after flooding and decreased afterwards. The temporal trend of δ56Fe values of total Fe in solution indicated dissimilatory iron reduction. The apparent isotopic fractionation between dissolved and colloidal Fe (Δ56Fedissolved-colloidal = δ56Fedissolved − δ56Fecolloidal) varied from 0.31 ± 0.04‰ to − 1.86 ± 0.26‰. Low δ56Fecolloidal (− 1.16 ± 0.04‰) values on day 4 of the experiment suggested colloid formation by precipitation of dissolved Fe, while the strong temporal variation in Δ56Fedissolved-colloidal indicated subsequent changes in colloid mineralogy, sorption to soil components and/or electron transfer-atom exchange. The variations in δ65Cu values (Δ65Cudissolved-colloidal from 0.81 ± 0.03‰ to 1.58 ± 0.09‰) are probably linked to the changing oxidation state of colloidal Cu. While at the beginning of the experiment colloidal Cu and solid soil Cu exchange, these systems decouple after the onset of sulfate reduction in the second half of the experiment. The experimental results fit well to findings from redoximorphic soils described in the literature and highlight the importance of colloids for metal release and the isotopic pattern in carbonatic soils.
KW - Colloids
KW - Copper
KW - Iron
KW - Redox processes
KW - Soil
KW - Stable metal isotopes
UR - http://www.scopus.com/inward/record.url?scp=85018792720&partnerID=8YFLogxK
U2 - 10.1016/j.chemgeo.2017.03.033
DO - 10.1016/j.chemgeo.2017.03.033
M3 - Article
AN - SCOPUS:85018792720
VL - 459
SP - 13
EP - 23
JO - Chemical geology
JF - Chemical geology
SN - 0009-2541
ER -