Details
Original language | English |
---|---|
Article number | 67 |
Number of pages | 19 |
Journal | Microbial cell factories |
Volume | 21 |
Issue number | 1 |
Early online date | 21 Apr 2022 |
Publication status | Published - 2022 |
Abstract
Background: Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results: Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions: Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization).
Keywords
- Acetate formation, Acid resistance, Bacterial Crabtree effect, Carbon metabolism, Carbon overfeeding, Energetics, Escherichia coli, GABA shunt, Motility
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biotechnology
- Chemical Engineering(all)
- Bioengineering
- Immunology and Microbiology(all)
- Applied Microbiology and Biotechnology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Microbial cell factories, Vol. 21, No. 1, 67, 2022.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess
AU - Li, Zhaopeng
AU - Nees, Markus
AU - Bettenbrock, Katja
AU - Rinas, Ursula
N1 - Funding Information: The authors are grateful for financial support from the German Ministry of Education and Research (BMBF) through the FORSYS-Partner program (grant FKZ 0315285) and to Öznur Kökpinar and Robert Geffers for help in RNA sample analysis. We also want to acknowledge the helpful comments and criticism of reviewer 2.
PY - 2022
Y1 - 2022
N2 - Background: Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results: Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions: Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization).
AB - Background: Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results: Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions: Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization).
KW - Acetate formation
KW - Acid resistance
KW - Bacterial Crabtree effect
KW - Carbon metabolism
KW - Carbon overfeeding
KW - Energetics
KW - Escherichia coli
KW - GABA shunt
KW - Motility
UR - http://www.scopus.com/inward/record.url?scp=85128638566&partnerID=8YFLogxK
U2 - 10.1186/s12934-022-01787-4
DO - 10.1186/s12934-022-01787-4
M3 - Article
C2 - 35449049
AN - SCOPUS:85128638566
VL - 21
JO - Microbial cell factories
JF - Microbial cell factories
SN - 1475-2859
IS - 1
M1 - 67
ER -