Details
Original language | English |
---|---|
Article number | e45193 |
Journal | PLOS ONE |
Volume | 7 |
Issue number | 9 |
Publication status | Published - 25 Sept 2012 |
Abstract
The phenotypic features of the Azotobacter vinelandii RhdA mutant MV474 (in which the rhdA gene was deleted) indicated that defects in antioxidant systems in this organism were related to the expression of the tandem-domain rhodanese RhdA. In this work, further insights on the effects of the oxidative imbalance generated by the absence of RhdA (e.g. increased levels of lipid hydroperoxides) are provided. Starting from the evidence that glutathione was depleted in MV474, and using both in silico and in vitro approaches, here we studied the interaction of wild-type RhdA and Cys230Ala site-directed RhdA mutant with glutathione species. We found that RhdA was able to bind in vitro reduced glutathione (GSH) and that RhdA-Cys230 residue was mandatory for the complex formation. RhdA catalyzed glutathione-disulfide formation in the presence of a system generating the glutathione thiyl radical (GS•, an oxidized form of GSH), thereby facilitating GSH regeneration. This reaction was negligible when the Cys230Ala RhdA mutant was used. The efficiency of RhdA as catalyst in GS•-scavenging activity is discussed on the basis of the measured parameters of both interaction with glutathione species and kinetic studies.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- General Biochemistry,Genetics and Molecular Biology
- Agricultural and Biological Sciences(all)
- General Agricultural and Biological Sciences
- General
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: PLOS ONE, Vol. 7, No. 9, e45193, 25.09.2012.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Involvement of the Azotobacter vinelandii Rhodanese-Like Protein RhdA in the Glutathione Regeneration Pathway
AU - Remelli, William
AU - Guerrieri, Nicoletta
AU - Klodmann, Jennifer
AU - Papenbrock, Jutta
AU - Pagani, Silvia
AU - Forlani, Fabio
PY - 2012/9/25
Y1 - 2012/9/25
N2 - The phenotypic features of the Azotobacter vinelandii RhdA mutant MV474 (in which the rhdA gene was deleted) indicated that defects in antioxidant systems in this organism were related to the expression of the tandem-domain rhodanese RhdA. In this work, further insights on the effects of the oxidative imbalance generated by the absence of RhdA (e.g. increased levels of lipid hydroperoxides) are provided. Starting from the evidence that glutathione was depleted in MV474, and using both in silico and in vitro approaches, here we studied the interaction of wild-type RhdA and Cys230Ala site-directed RhdA mutant with glutathione species. We found that RhdA was able to bind in vitro reduced glutathione (GSH) and that RhdA-Cys230 residue was mandatory for the complex formation. RhdA catalyzed glutathione-disulfide formation in the presence of a system generating the glutathione thiyl radical (GS•, an oxidized form of GSH), thereby facilitating GSH regeneration. This reaction was negligible when the Cys230Ala RhdA mutant was used. The efficiency of RhdA as catalyst in GS•-scavenging activity is discussed on the basis of the measured parameters of both interaction with glutathione species and kinetic studies.
AB - The phenotypic features of the Azotobacter vinelandii RhdA mutant MV474 (in which the rhdA gene was deleted) indicated that defects in antioxidant systems in this organism were related to the expression of the tandem-domain rhodanese RhdA. In this work, further insights on the effects of the oxidative imbalance generated by the absence of RhdA (e.g. increased levels of lipid hydroperoxides) are provided. Starting from the evidence that glutathione was depleted in MV474, and using both in silico and in vitro approaches, here we studied the interaction of wild-type RhdA and Cys230Ala site-directed RhdA mutant with glutathione species. We found that RhdA was able to bind in vitro reduced glutathione (GSH) and that RhdA-Cys230 residue was mandatory for the complex formation. RhdA catalyzed glutathione-disulfide formation in the presence of a system generating the glutathione thiyl radical (GS•, an oxidized form of GSH), thereby facilitating GSH regeneration. This reaction was negligible when the Cys230Ala RhdA mutant was used. The efficiency of RhdA as catalyst in GS•-scavenging activity is discussed on the basis of the measured parameters of both interaction with glutathione species and kinetic studies.
UR - http://www.scopus.com/inward/record.url?scp=84866649758&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0045193
DO - 10.1371/journal.pone.0045193
M3 - Article
C2 - 23049775
AN - SCOPUS:84866649758
VL - 7
JO - PLOS ONE
JF - PLOS ONE
SN - 1932-6203
IS - 9
M1 - e45193
ER -