Details
Original language | English |
---|---|
Title of host publication | Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004 |
Pages | 409-418 |
Number of pages | 10 |
Publication status | Published - 2004 |
Event | 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004 - Limassol, Cyprus Duration: 21 Sept 2004 → 23 Sept 2004 |
Abstract
The thixoforging technology offers a large technical and economical potential for the production of highly stressed parts with complex shaped geometries. While thixoforming is an established process for aluminum parts, the efforts described below focus on the development of this technology for steel applications. Another focus is put on ceramic tool materials since these are required to enable such a high temperature process. Thixoforging of high-melting metals (e.g. forging steels) demands a sophisticated process control and adapted tool materials as well as suitable ingoing material. A large need for research is still required in this field. Possible products made by means of thixoforging are e.g. running and driving gear components which are produced by multiple conventional forging step operations today. In this paper first experiments concerning the use of ceramic tool materials for thixoforging of steel discussed. Therefore a hybrid die that consists of a steel shrink ring with a ceramic insert was developed and built up. Different monolithic and composite ceramics, based on nitrides, carbides, borides and oxides have been evaluated, with respect to the interfacial reactions between solids and melts by means of thermodynamical calculations and the method of sessile drop in combination with investigations by electron microscope (SEM, EDX). Due to the separation of the heating process of the slug from the tool system an encapsulated transport of the heated slug is needed to prevent unwanted cooling and high temperature oxidation (scale). This transfer is carried out inside high temperature resistant containers. The suitability (e.g. thermo shock resistance) of different materials for the use as transport containers was also subject of this research work. The forming experiments were carried out with the institute's hydraulic press (AP&T LPS 4000). The process logic controller (PLC, Type SINUMERIK 840D) of this press offers the appropriate flexibility and various control modes needed for a sophisticated and reproducible filling of the die. Furthermore, all relevant process parameters such as force, velocity and displacement of the stamp can be recorded by a built-in process computer.
Keywords
- Ceramic Tools, Semi-Solid Metal Forming, Thixoforging, Thixoforming
ASJC Scopus subject areas
- Engineering(all)
- General Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004. 2004. p. 409-418.
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Investigations on steel grades and tool materials for thixoforging
AU - Behrens, Bernd-Arno
AU - Haller, Bjoern
AU - Fischer, Dirk
AU - Schober, Reiner
PY - 2004
Y1 - 2004
N2 - The thixoforging technology offers a large technical and economical potential for the production of highly stressed parts with complex shaped geometries. While thixoforming is an established process for aluminum parts, the efforts described below focus on the development of this technology for steel applications. Another focus is put on ceramic tool materials since these are required to enable such a high temperature process. Thixoforging of high-melting metals (e.g. forging steels) demands a sophisticated process control and adapted tool materials as well as suitable ingoing material. A large need for research is still required in this field. Possible products made by means of thixoforging are e.g. running and driving gear components which are produced by multiple conventional forging step operations today. In this paper first experiments concerning the use of ceramic tool materials for thixoforging of steel discussed. Therefore a hybrid die that consists of a steel shrink ring with a ceramic insert was developed and built up. Different monolithic and composite ceramics, based on nitrides, carbides, borides and oxides have been evaluated, with respect to the interfacial reactions between solids and melts by means of thermodynamical calculations and the method of sessile drop in combination with investigations by electron microscope (SEM, EDX). Due to the separation of the heating process of the slug from the tool system an encapsulated transport of the heated slug is needed to prevent unwanted cooling and high temperature oxidation (scale). This transfer is carried out inside high temperature resistant containers. The suitability (e.g. thermo shock resistance) of different materials for the use as transport containers was also subject of this research work. The forming experiments were carried out with the institute's hydraulic press (AP&T LPS 4000). The process logic controller (PLC, Type SINUMERIK 840D) of this press offers the appropriate flexibility and various control modes needed for a sophisticated and reproducible filling of the die. Furthermore, all relevant process parameters such as force, velocity and displacement of the stamp can be recorded by a built-in process computer.
AB - The thixoforging technology offers a large technical and economical potential for the production of highly stressed parts with complex shaped geometries. While thixoforming is an established process for aluminum parts, the efforts described below focus on the development of this technology for steel applications. Another focus is put on ceramic tool materials since these are required to enable such a high temperature process. Thixoforging of high-melting metals (e.g. forging steels) demands a sophisticated process control and adapted tool materials as well as suitable ingoing material. A large need for research is still required in this field. Possible products made by means of thixoforging are e.g. running and driving gear components which are produced by multiple conventional forging step operations today. In this paper first experiments concerning the use of ceramic tool materials for thixoforging of steel discussed. Therefore a hybrid die that consists of a steel shrink ring with a ceramic insert was developed and built up. Different monolithic and composite ceramics, based on nitrides, carbides, borides and oxides have been evaluated, with respect to the interfacial reactions between solids and melts by means of thermodynamical calculations and the method of sessile drop in combination with investigations by electron microscope (SEM, EDX). Due to the separation of the heating process of the slug from the tool system an encapsulated transport of the heated slug is needed to prevent unwanted cooling and high temperature oxidation (scale). This transfer is carried out inside high temperature resistant containers. The suitability (e.g. thermo shock resistance) of different materials for the use as transport containers was also subject of this research work. The forming experiments were carried out with the institute's hydraulic press (AP&T LPS 4000). The process logic controller (PLC, Type SINUMERIK 840D) of this press offers the appropriate flexibility and various control modes needed for a sophisticated and reproducible filling of the die. Furthermore, all relevant process parameters such as force, velocity and displacement of the stamp can be recorded by a built-in process computer.
KW - Ceramic Tools
KW - Semi-Solid Metal Forming
KW - Thixoforging
KW - Thixoforming
UR - http://www.scopus.com/inward/record.url?scp=27944507388&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:27944507388
SP - 409
EP - 418
BT - Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004
T2 - 8th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2004
Y2 - 21 September 2004 through 23 September 2004
ER -