Details
Original language | English |
---|---|
Pages (from-to) | 339-346 |
Number of pages | 8 |
Journal | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Volume | 5 |
Issue number | 3 |
Publication status | Published - 3 Aug 2020 |
Event | 2020 24th ISPRS Congress on Technical Commission III - Nice, Virtual, France Duration: 31 Aug 2020 → 2 Sept 2020 |
Abstract
Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material of the earth's surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the features of the pixels belonging to the same category inside one mini-batch, i.e.These features should be close in feature space. Our experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites.
Keywords
- Aerial imagery, CNN, Cosine similarity loss, land cover classification, Skip-connections
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Earth and Planetary Sciences (miscellaneous)
- Environmental Science(all)
- Environmental Science (miscellaneous)
- Physics and Astronomy(all)
- Instrumentation
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 5, No. 3, 03.08.2020, p. 339-346.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Investigations on skip-connections with an additional cosine similarity loss for land cover classification
AU - Yang, C.
AU - Rottensteiner, F.
AU - Heipke, C.
PY - 2020/8/3
Y1 - 2020/8/3
N2 - Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material of the earth's surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the features of the pixels belonging to the same category inside one mini-batch, i.e.These features should be close in feature space. Our experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites.
AB - Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material of the earth's surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the features of the pixels belonging to the same category inside one mini-batch, i.e.These features should be close in feature space. Our experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites.
KW - Aerial imagery
KW - CNN
KW - Cosine similarity loss
KW - land cover classification
KW - Skip-connections
UR - http://www.scopus.com/inward/record.url?scp=85090328567&partnerID=8YFLogxK
U2 - 10.5194/isprs-Annals-V-3-2020-339-2020
DO - 10.5194/isprs-Annals-V-3-2020-339-2020
M3 - Conference article
AN - SCOPUS:85090328567
VL - 5
SP - 339
EP - 346
JO - ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
JF - ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
SN - 2194-9042
IS - 3
T2 - 2020 24th ISPRS Congress on Technical Commission III
Y2 - 31 August 2020 through 2 September 2020
ER -