Details
Original language | English |
---|---|
Article number | 042063 |
Number of pages | 10 |
Journal | Journal of laser applications |
Volume | 36 |
Issue number | 4 |
Early online date | 29 Oct 2024 |
Publication status | Published - Nov 2024 |
Abstract
Solid-state laser beam sources offer the possibility of generating high-brilliance laser beams with low expansion and high usable intensity at the focal point. New approaches include beam shaping with the use of core and ring fiber and, therefore, variable power distribution in the laser beam focal point and material interaction area. Particularly, high-power laser beam welding benefits from beam shaping because of the stabilizing effect on the weld pool. Furthermore, the technical progress achieved with regard to beam quality also allows one to achieve high Rayleigh lengths and, therefore, a more uniform beam diameter over the whole material thickness. In this study, investigations on high-power laser beam welding with a 24 kW disk laser beam source are conducted for three different materials (mild steel, aluminum alloy, and copper), which are of high interest for welding in different sectors. The influence of power distribution between the core and the ring as well as welding speed on weld geometry (depth and width), weld pool stability, and the resulting weld seam quality is investigated. It is shown that the welding process cannot just be scaled up in comparison with welding with lower laser beam power but has its own challenges. It is possible that high welding depths (12 mm for copper, more than 12 mm is possible for aluminum, and 25 mm for mild steel) could be achieved in one pass. To achieve this, aluminum needs the lowest energy per unit length per mm of sheet thickness and copper the highest.
Keywords
- aluminum, copper, high-power laser beam welding, power distribution, steel, weld depth
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Biomedical Engineering
- Physics and Astronomy(all)
- Instrumentation
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of laser applications, Vol. 36, No. 4, 042063, 11.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Investigations on opportunities and challenges of brilliant high-power laser beam welding with 24 kW and adjustable power distribution for different materials
AU - Seffer, Sarah
AU - Seffer, Oliver
AU - Hermsdorf, Jörg
AU - Kaierle, Stefan
N1 - Publisher Copyright: © 2024 Author(s).
PY - 2024/11
Y1 - 2024/11
N2 - Solid-state laser beam sources offer the possibility of generating high-brilliance laser beams with low expansion and high usable intensity at the focal point. New approaches include beam shaping with the use of core and ring fiber and, therefore, variable power distribution in the laser beam focal point and material interaction area. Particularly, high-power laser beam welding benefits from beam shaping because of the stabilizing effect on the weld pool. Furthermore, the technical progress achieved with regard to beam quality also allows one to achieve high Rayleigh lengths and, therefore, a more uniform beam diameter over the whole material thickness. In this study, investigations on high-power laser beam welding with a 24 kW disk laser beam source are conducted for three different materials (mild steel, aluminum alloy, and copper), which are of high interest for welding in different sectors. The influence of power distribution between the core and the ring as well as welding speed on weld geometry (depth and width), weld pool stability, and the resulting weld seam quality is investigated. It is shown that the welding process cannot just be scaled up in comparison with welding with lower laser beam power but has its own challenges. It is possible that high welding depths (12 mm for copper, more than 12 mm is possible for aluminum, and 25 mm for mild steel) could be achieved in one pass. To achieve this, aluminum needs the lowest energy per unit length per mm of sheet thickness and copper the highest.
AB - Solid-state laser beam sources offer the possibility of generating high-brilliance laser beams with low expansion and high usable intensity at the focal point. New approaches include beam shaping with the use of core and ring fiber and, therefore, variable power distribution in the laser beam focal point and material interaction area. Particularly, high-power laser beam welding benefits from beam shaping because of the stabilizing effect on the weld pool. Furthermore, the technical progress achieved with regard to beam quality also allows one to achieve high Rayleigh lengths and, therefore, a more uniform beam diameter over the whole material thickness. In this study, investigations on high-power laser beam welding with a 24 kW disk laser beam source are conducted for three different materials (mild steel, aluminum alloy, and copper), which are of high interest for welding in different sectors. The influence of power distribution between the core and the ring as well as welding speed on weld geometry (depth and width), weld pool stability, and the resulting weld seam quality is investigated. It is shown that the welding process cannot just be scaled up in comparison with welding with lower laser beam power but has its own challenges. It is possible that high welding depths (12 mm for copper, more than 12 mm is possible for aluminum, and 25 mm for mild steel) could be achieved in one pass. To achieve this, aluminum needs the lowest energy per unit length per mm of sheet thickness and copper the highest.
KW - aluminum
KW - copper
KW - high-power laser beam welding
KW - power distribution
KW - steel
KW - weld depth
UR - http://www.scopus.com/inward/record.url?scp=85208678070&partnerID=8YFLogxK
U2 - 10.2351/7.0001553
DO - 10.2351/7.0001553
M3 - Article
AN - SCOPUS:85208678070
VL - 36
JO - Journal of laser applications
JF - Journal of laser applications
SN - 1042-346X
IS - 4
M1 - 042063
ER -