Details
Original language | English |
---|---|
Title of host publication | Lecture Notes in Production Engineering |
Publisher | Springer Nature |
Pages | 91-99 |
Number of pages | 9 |
ISBN (electronic) | 978-3-031-18318-8 |
ISBN (print) | 978-3-031-18317-1 |
Publication status | Published - 2 Feb 2023 |
Publication series
Name | Lecture Notes in Production Engineering |
---|---|
Volume | Part F1163 |
ISSN (Print) | 2194-0525 |
ISSN (electronic) | 2194-0533 |
Abstract
Surface layers of forging dies are subject to thermal, mechanical and tribological influences during forging. These loads occur combined and result in a variety of tool damages, which shorten tool life. The predominant cause for tool failure is wear. While abrasive wear and crack formation directly cause tool failure, adhesive wear can be equally disruptive as it results in a geometrical deviation of the tool and the formed work piece. However, adhesive wear can also be beneficial in acting as a regenerating, protective layer to the surface of forging dies. This paper deals with the influence of process parameters and billet material on the formation of adhesive wear on forging dies. As adhesive wear is facilitated at elevated temperatures, high thermally loaded dies with a mandrel geometry are investigated in forging tests. During forging, thermal, mechanical and tribological loads on the tools are varied by changing cooling parameters, steel billet material and lubrication strategies. The study presents adhesion-promoting process parameters and tool areas of increased adhesive wear. The results show, that the formation of adhesive wear occurs predominantly at high tool temperatures and in areas with increased material flow, while lubrication and the billet material show little to no impact.
Keywords
- Adhesive wear, Die forging, Tool life
ASJC Scopus subject areas
- Engineering(all)
- Industrial and Manufacturing Engineering
- Economics, Econometrics and Finance(all)
- Economics, Econometrics and Finance (miscellaneous)
- Engineering(all)
- Safety, Risk, Reliability and Quality
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Lecture Notes in Production Engineering. Springer Nature, 2023. p. 91-99 (Lecture Notes in Production Engineering; Vol. Part F1163).
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Investigation on Adhesion-Promoting Process Parameters in Steel Bulk Metal Forming
AU - Lorenz, U.
AU - Brunotte, K.
AU - Peddinghaus, J.
AU - Behrens, B. A.
N1 - Funding Information: The presented investigations are carried out within the project ID 349885770 “Influence of cooling of forging dies on the process-related microstructural changes in the surface zone and their effect on wear behaviour” of the German Research Foundation (DFG). We are thankful for the assistance provided
PY - 2023/2/2
Y1 - 2023/2/2
N2 - Surface layers of forging dies are subject to thermal, mechanical and tribological influences during forging. These loads occur combined and result in a variety of tool damages, which shorten tool life. The predominant cause for tool failure is wear. While abrasive wear and crack formation directly cause tool failure, adhesive wear can be equally disruptive as it results in a geometrical deviation of the tool and the formed work piece. However, adhesive wear can also be beneficial in acting as a regenerating, protective layer to the surface of forging dies. This paper deals with the influence of process parameters and billet material on the formation of adhesive wear on forging dies. As adhesive wear is facilitated at elevated temperatures, high thermally loaded dies with a mandrel geometry are investigated in forging tests. During forging, thermal, mechanical and tribological loads on the tools are varied by changing cooling parameters, steel billet material and lubrication strategies. The study presents adhesion-promoting process parameters and tool areas of increased adhesive wear. The results show, that the formation of adhesive wear occurs predominantly at high tool temperatures and in areas with increased material flow, while lubrication and the billet material show little to no impact.
AB - Surface layers of forging dies are subject to thermal, mechanical and tribological influences during forging. These loads occur combined and result in a variety of tool damages, which shorten tool life. The predominant cause for tool failure is wear. While abrasive wear and crack formation directly cause tool failure, adhesive wear can be equally disruptive as it results in a geometrical deviation of the tool and the formed work piece. However, adhesive wear can also be beneficial in acting as a regenerating, protective layer to the surface of forging dies. This paper deals with the influence of process parameters and billet material on the formation of adhesive wear on forging dies. As adhesive wear is facilitated at elevated temperatures, high thermally loaded dies with a mandrel geometry are investigated in forging tests. During forging, thermal, mechanical and tribological loads on the tools are varied by changing cooling parameters, steel billet material and lubrication strategies. The study presents adhesion-promoting process parameters and tool areas of increased adhesive wear. The results show, that the formation of adhesive wear occurs predominantly at high tool temperatures and in areas with increased material flow, while lubrication and the billet material show little to no impact.
KW - Adhesive wear
KW - Die forging
KW - Tool life
UR - http://www.scopus.com/inward/record.url?scp=85166641482&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-18318-8_10
DO - 10.1007/978-3-031-18318-8_10
M3 - Contribution to book/anthology
AN - SCOPUS:85166641482
SN - 978-3-031-18317-1
T3 - Lecture Notes in Production Engineering
SP - 91
EP - 99
BT - Lecture Notes in Production Engineering
PB - Springer Nature
ER -