Details
Original language | English |
---|---|
Article number | 112694 |
Number of pages | 12 |
Journal | Knowledge-based systems |
Volume | 305 |
Early online date | 28 Oct 2024 |
Publication status | Published - 3 Dec 2024 |
Abstract
Timely fault detection is crucial for preventing issues like worn clutch plates and excessive friction material degradation, enhancing fuel efficiency, and prolonging clutch lifespan. This study focuses on early fault diagnosis in dry friction clutch systems using machine learning (ML) techniques. Vibration data is analyzed under different load and fault conditions, extracting statistical, histogram, and auto-regressive moving average (ARMA) features. Feature selection employs the J48 decision tree algorithm, evaluated with eight ML classifiers: support vector machines (SVM), k-nearest neighbor (kNN), linear model tree (LMT), random forest (RF), multilayer perceptron (MLP), logistic regression (LR), J48, and Naive Bayes. The evaluation revealed that individual classifiers achieved the highest testing accuracies with statistical feature selection as 83% for both MLP and LR at no load, 90% for MLP at 5 kg, and 93% for KNN at 10 kg. For histogram feature selection, KNN and MLP both reached 85% at no load, MLP achieved 91% at 5 kg, and RF attained 97% at 10 kg. With ARMA feature selection, KNN reached 93% at no load, LR achieved 94% at 5 kg, and RF reached 86% at 10 kg. The voting strategy notably improved these results, with the RF-KNN-J48 ensemble reaching 98% for histogram features at 10 kg, the KNN-LMT-RF ensemble achieving 94% for ARMA features at no load, and the SVM-MLP-LMT ensemble attaining 95% for ARMA features at 5 kg. Hence, a combination of three classifiers using the majority voting rule consistently outperforms standalone classifiers, striking a balance between diversity and complexity, facilitating robust decision-making. In practical applications, selecting the optimal combination of feature selection method and classifier is vital for accurate fault classification. This study provides valuable guidance for engineers and practitioners implementing robust load classification systems in industrial settings.
Keywords
- Artificial Intelligence, Classifier ensemble, Dry friction clutch system, Fault detection, Vibration analysis
ASJC Scopus subject areas
- Computer Science(all)
- Software
- Business, Management and Accounting(all)
- Management Information Systems
- Decision Sciences(all)
- Information Systems and Management
- Computer Science(all)
- Artificial Intelligence
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Knowledge-based systems, Vol. 305, 112694, 03.12.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Intelligent fault diagnosis for tribo-mechanical systems by machine learning
T2 - Multi-feature extraction and ensemble voting methods
AU - Shandhoosh, V.
AU - Venkatesh S, Naveen
AU - Chakrapani, Ganjikunta
AU - Sugumaran, V.
AU - Ramteke, Sangharatna M.
AU - Marian, Max
N1 - Publisher Copyright: © 2024 The Author(s)
PY - 2024/12/3
Y1 - 2024/12/3
N2 - Timely fault detection is crucial for preventing issues like worn clutch plates and excessive friction material degradation, enhancing fuel efficiency, and prolonging clutch lifespan. This study focuses on early fault diagnosis in dry friction clutch systems using machine learning (ML) techniques. Vibration data is analyzed under different load and fault conditions, extracting statistical, histogram, and auto-regressive moving average (ARMA) features. Feature selection employs the J48 decision tree algorithm, evaluated with eight ML classifiers: support vector machines (SVM), k-nearest neighbor (kNN), linear model tree (LMT), random forest (RF), multilayer perceptron (MLP), logistic regression (LR), J48, and Naive Bayes. The evaluation revealed that individual classifiers achieved the highest testing accuracies with statistical feature selection as 83% for both MLP and LR at no load, 90% for MLP at 5 kg, and 93% for KNN at 10 kg. For histogram feature selection, KNN and MLP both reached 85% at no load, MLP achieved 91% at 5 kg, and RF attained 97% at 10 kg. With ARMA feature selection, KNN reached 93% at no load, LR achieved 94% at 5 kg, and RF reached 86% at 10 kg. The voting strategy notably improved these results, with the RF-KNN-J48 ensemble reaching 98% for histogram features at 10 kg, the KNN-LMT-RF ensemble achieving 94% for ARMA features at no load, and the SVM-MLP-LMT ensemble attaining 95% for ARMA features at 5 kg. Hence, a combination of three classifiers using the majority voting rule consistently outperforms standalone classifiers, striking a balance between diversity and complexity, facilitating robust decision-making. In practical applications, selecting the optimal combination of feature selection method and classifier is vital for accurate fault classification. This study provides valuable guidance for engineers and practitioners implementing robust load classification systems in industrial settings.
AB - Timely fault detection is crucial for preventing issues like worn clutch plates and excessive friction material degradation, enhancing fuel efficiency, and prolonging clutch lifespan. This study focuses on early fault diagnosis in dry friction clutch systems using machine learning (ML) techniques. Vibration data is analyzed under different load and fault conditions, extracting statistical, histogram, and auto-regressive moving average (ARMA) features. Feature selection employs the J48 decision tree algorithm, evaluated with eight ML classifiers: support vector machines (SVM), k-nearest neighbor (kNN), linear model tree (LMT), random forest (RF), multilayer perceptron (MLP), logistic regression (LR), J48, and Naive Bayes. The evaluation revealed that individual classifiers achieved the highest testing accuracies with statistical feature selection as 83% for both MLP and LR at no load, 90% for MLP at 5 kg, and 93% for KNN at 10 kg. For histogram feature selection, KNN and MLP both reached 85% at no load, MLP achieved 91% at 5 kg, and RF attained 97% at 10 kg. With ARMA feature selection, KNN reached 93% at no load, LR achieved 94% at 5 kg, and RF reached 86% at 10 kg. The voting strategy notably improved these results, with the RF-KNN-J48 ensemble reaching 98% for histogram features at 10 kg, the KNN-LMT-RF ensemble achieving 94% for ARMA features at no load, and the SVM-MLP-LMT ensemble attaining 95% for ARMA features at 5 kg. Hence, a combination of three classifiers using the majority voting rule consistently outperforms standalone classifiers, striking a balance between diversity and complexity, facilitating robust decision-making. In practical applications, selecting the optimal combination of feature selection method and classifier is vital for accurate fault classification. This study provides valuable guidance for engineers and practitioners implementing robust load classification systems in industrial settings.
KW - Artificial Intelligence
KW - Classifier ensemble
KW - Dry friction clutch system
KW - Fault detection
KW - Vibration analysis
UR - http://www.scopus.com/inward/record.url?scp=85207899096&partnerID=8YFLogxK
U2 - 10.1016/j.knosys.2024.112694
DO - 10.1016/j.knosys.2024.112694
M3 - Article
AN - SCOPUS:85207899096
VL - 305
JO - Knowledge-based systems
JF - Knowledge-based systems
SN - 0950-7051
M1 - 112694
ER -