Details
Original language | English |
---|---|
Pages (from-to) | 2429-2438 |
Number of pages | 10 |
Journal | Analytical and Bioanalytical Chemistry |
Volume | 398 |
Issue number | 6 |
Publication status | Published - 12 Sept 2010 |
Abstract
Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems-the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry.
Keywords
- Cell-size distribution, Imagebased sensors, In-situ Microscopy, In-situ monitoring, Inline estimation
ASJC Scopus subject areas
- Chemistry(all)
- Analytical Chemistry
- Biochemistry, Genetics and Molecular Biology(all)
- Biochemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Analytical and Bioanalytical Chemistry, Vol. 398, No. 6, 12.09.2010, p. 2429-2438.
Research output: Contribution to journal › Review article › Research › peer review
}
TY - JOUR
T1 - In-situ imaging sensors for bioprocess monitoring
T2 - State of the art
AU - Bluma, Arne
AU - Höpfner, Tim
AU - Lindner, Patrick
AU - Rehbock, Christoph
AU - Beutel, Sascha
AU - Riechers, Daniel
AU - Hitzmann, Bernd
AU - Scheper, Thomas
PY - 2010/9/12
Y1 - 2010/9/12
N2 - Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems-the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry.
AB - Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems-the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry.
KW - Cell-size distribution
KW - Imagebased sensors
KW - In-situ Microscopy
KW - In-situ monitoring
KW - Inline estimation
UR - http://www.scopus.com/inward/record.url?scp=78650227847&partnerID=8YFLogxK
U2 - 10.1007/s00216-010-4181-y
DO - 10.1007/s00216-010-4181-y
M3 - Review article
C2 - 20835863
AN - SCOPUS:78650227847
VL - 398
SP - 2429
EP - 2438
JO - Analytical and Bioanalytical Chemistry
JF - Analytical and Bioanalytical Chemistry
SN - 1618-2642
IS - 6
ER -