Details
Original language | English |
---|---|
Pages (from-to) | 2499-2504 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 114 |
Issue number | 6 |
Publication status | Published - 22 Jan 2010 |
Externally published | Yes |
Abstract
Defined hydrodynamic properties of nanoparticle colloids are required for applications in dosimetry, rheology, or biosensing studies. During the generation of nanoparticles by laser ablation of a solid target in liquids, the temperature of the liquid increases, which may effect cavitation bubble and particle formation. We demonstrate that this temperature variation influences the hydrodynamic diameter of the resulting colloidal nanoparticles when a gold target is ablated by an IR femtosecond laser in water at different stabilized liquid temperatures in the range of 283-353 K. The maximum hydrodynamic diameter was observed at 330 K, the temperature at which the compressibility of water reaches its minimum. The formation of particles by condensation of ablated species in the liquid matrix or inside the confined cavitation bubble is discussed, as well as the influence of the physical properties of the liquid that vary with temperature, such as viscosity and compressibility. The reduction of the hydrodynamic particle diameter at the higher compressible state of water indicates that a lower number of agglomerates are dispersed in the liquid, reducing the polydispersity index of the gold colloid.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Energy(all)
- General Energy
- Chemistry(all)
- Physical and Theoretical Chemistry
- Materials Science(all)
- Surfaces, Coatings and Films
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Physical Chemistry C, Vol. 114, No. 6, 22.01.2010, p. 2499-2504.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Influence of Water Temperature on the Hydrodynamic Diameter of Gold Nanoparticles from Laser Ablation
AU - Menéndez-Manjón, Ana
AU - Chichkov, Boris N.
AU - Barcikowski, Stephan
PY - 2010/1/22
Y1 - 2010/1/22
N2 - Defined hydrodynamic properties of nanoparticle colloids are required for applications in dosimetry, rheology, or biosensing studies. During the generation of nanoparticles by laser ablation of a solid target in liquids, the temperature of the liquid increases, which may effect cavitation bubble and particle formation. We demonstrate that this temperature variation influences the hydrodynamic diameter of the resulting colloidal nanoparticles when a gold target is ablated by an IR femtosecond laser in water at different stabilized liquid temperatures in the range of 283-353 K. The maximum hydrodynamic diameter was observed at 330 K, the temperature at which the compressibility of water reaches its minimum. The formation of particles by condensation of ablated species in the liquid matrix or inside the confined cavitation bubble is discussed, as well as the influence of the physical properties of the liquid that vary with temperature, such as viscosity and compressibility. The reduction of the hydrodynamic particle diameter at the higher compressible state of water indicates that a lower number of agglomerates are dispersed in the liquid, reducing the polydispersity index of the gold colloid.
AB - Defined hydrodynamic properties of nanoparticle colloids are required for applications in dosimetry, rheology, or biosensing studies. During the generation of nanoparticles by laser ablation of a solid target in liquids, the temperature of the liquid increases, which may effect cavitation bubble and particle formation. We demonstrate that this temperature variation influences the hydrodynamic diameter of the resulting colloidal nanoparticles when a gold target is ablated by an IR femtosecond laser in water at different stabilized liquid temperatures in the range of 283-353 K. The maximum hydrodynamic diameter was observed at 330 K, the temperature at which the compressibility of water reaches its minimum. The formation of particles by condensation of ablated species in the liquid matrix or inside the confined cavitation bubble is discussed, as well as the influence of the physical properties of the liquid that vary with temperature, such as viscosity and compressibility. The reduction of the hydrodynamic particle diameter at the higher compressible state of water indicates that a lower number of agglomerates are dispersed in the liquid, reducing the polydispersity index of the gold colloid.
UR - http://www.scopus.com/inward/record.url?scp=77249103571&partnerID=8YFLogxK
U2 - 10.1021/jp909897v
DO - 10.1021/jp909897v
M3 - Article
AN - SCOPUS:77249103571
VL - 114
SP - 2499
EP - 2504
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
SN - 1932-7447
IS - 6
ER -