Details
Original language | English |
---|---|
Pages (from-to) | 147-158 |
Number of pages | 12 |
Journal | Materials Science and Engineering A |
Volume | 559 |
Publication status | Published - 18 Aug 2012 |
Externally published | Yes |
Abstract
Micro-compression tests were performed on pre-strained nickel (Ni) single crystals in order to investigate the influence of the initial dislocation arrangement on the size dependence of small-scale metal structures. A bulk Ni sample was grown using the Czochralski method and sectioned into four compression samples, which were then pre-strained to nominal strains of 5, 10, 15 and 20%. Bulk samples were then characterized using transmission electron microscopy (TEM), micro-Laue diffraction, and electron backscatter diffraction. TEM results show that a dislocation cell structure was present for all deformed samples, and Laue diffraction demonstrated that the internal strain increased with increased amount of pre-straining. Small-scale pillars with diameters from 200. nm to 5 μm were focused ion beam (FIB) machined from each of the four deformed bulk samples and further compressed via a nanoindenter equipped with a flat diamond punch. Results demonstrate that bulk pre-straining inhibits the sample size effect. For heavily pre-strained bulk samples, the deformation history does not affect the stress-strain behavior, as the pillars demonstrated elevated strength and rather low strain hardening over the whole investigated size range. In situ TEM and micro-Laue diffraction measurements of pillars confirmed little change in dislocation density during pillar compression. Thus, the dislocation cell walls created by heavy bulk pre-straining become the relevant internal material structure controlling the mechanical properties, dominating the sample size effect observed in the low dislocation density regime.
Keywords
- Dislocations, Electron microscopy, Micropillar compression, Nickel, Plasticity, Size effect
ASJC Scopus subject areas
- Materials Science(all)
- General Materials Science
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Mechanics of Materials
- Engineering(all)
- Mechanical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Materials Science and Engineering A, Vol. 559, 18.08.2012, p. 147-158.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Influence of bulk pre-straining on the size effect in nickel compression pillars
AU - Schneider, A. S.
AU - Kiener, D.
AU - Yakacki, C. M.
AU - Maier, H. J.
AU - Gruber, P. A.
AU - Tamura, N.
AU - Kunz, M.
AU - Minor, A. M.
AU - Frick, C. P.
PY - 2012/8/18
Y1 - 2012/8/18
N2 - Micro-compression tests were performed on pre-strained nickel (Ni) single crystals in order to investigate the influence of the initial dislocation arrangement on the size dependence of small-scale metal structures. A bulk Ni sample was grown using the Czochralski method and sectioned into four compression samples, which were then pre-strained to nominal strains of 5, 10, 15 and 20%. Bulk samples were then characterized using transmission electron microscopy (TEM), micro-Laue diffraction, and electron backscatter diffraction. TEM results show that a dislocation cell structure was present for all deformed samples, and Laue diffraction demonstrated that the internal strain increased with increased amount of pre-straining. Small-scale pillars with diameters from 200. nm to 5 μm were focused ion beam (FIB) machined from each of the four deformed bulk samples and further compressed via a nanoindenter equipped with a flat diamond punch. Results demonstrate that bulk pre-straining inhibits the sample size effect. For heavily pre-strained bulk samples, the deformation history does not affect the stress-strain behavior, as the pillars demonstrated elevated strength and rather low strain hardening over the whole investigated size range. In situ TEM and micro-Laue diffraction measurements of pillars confirmed little change in dislocation density during pillar compression. Thus, the dislocation cell walls created by heavy bulk pre-straining become the relevant internal material structure controlling the mechanical properties, dominating the sample size effect observed in the low dislocation density regime.
AB - Micro-compression tests were performed on pre-strained nickel (Ni) single crystals in order to investigate the influence of the initial dislocation arrangement on the size dependence of small-scale metal structures. A bulk Ni sample was grown using the Czochralski method and sectioned into four compression samples, which were then pre-strained to nominal strains of 5, 10, 15 and 20%. Bulk samples were then characterized using transmission electron microscopy (TEM), micro-Laue diffraction, and electron backscatter diffraction. TEM results show that a dislocation cell structure was present for all deformed samples, and Laue diffraction demonstrated that the internal strain increased with increased amount of pre-straining. Small-scale pillars with diameters from 200. nm to 5 μm were focused ion beam (FIB) machined from each of the four deformed bulk samples and further compressed via a nanoindenter equipped with a flat diamond punch. Results demonstrate that bulk pre-straining inhibits the sample size effect. For heavily pre-strained bulk samples, the deformation history does not affect the stress-strain behavior, as the pillars demonstrated elevated strength and rather low strain hardening over the whole investigated size range. In situ TEM and micro-Laue diffraction measurements of pillars confirmed little change in dislocation density during pillar compression. Thus, the dislocation cell walls created by heavy bulk pre-straining become the relevant internal material structure controlling the mechanical properties, dominating the sample size effect observed in the low dislocation density regime.
KW - Dislocations
KW - Electron microscopy
KW - Micropillar compression
KW - Nickel
KW - Plasticity
KW - Size effect
UR - http://www.scopus.com/inward/record.url?scp=84867744327&partnerID=8YFLogxK
U2 - 10.1016/j.msea.2012.08.055
DO - 10.1016/j.msea.2012.08.055
M3 - Article
AN - SCOPUS:84867744327
VL - 559
SP - 147
EP - 158
JO - Materials Science and Engineering A
JF - Materials Science and Engineering A
SN - 0921-5093
ER -