Details
Original language | English |
---|---|
Article number | 054 |
Number of pages | 32 |
Journal | Journal of Cosmology and Astroparticle Physics |
Volume | 2024 |
Issue number | 8 |
Publication status | Published - 29 Aug 2024 |
Abstract
We thoroughly study the induced gravitational wave interpretation of the possible gravitational wave background reported by PTA collaborations, considering the unknown equation of state w of the early universe. We perform a Bayesian analysis of the NANOGrav data using the publicly available PTArcade code together with SIGWfast for the numerical integration of the induced gravitational wave spectrum. We focus on two cases: a monochromatic and a log-normal primordial spectrum of fluctuations. For the log-normal spectrum, we show that, while the results are not very sensitive to w when the GW peak is close to the PTA window, radiation domination is out of the 2σ contours when only the infra-red power-law tail contributes. For the monochromatic spectrum, the 2σ bounds yield 0.1 ≲ w ≲ 0.9 so that radiation domination is close to the central value. We also investigate the primordial black hole (PBH) abundance for both monochromatic and log-normal power spectrum. We show that, in general terms, a larger width and stiffer equation of state alleviates the overproduction of PBHs. No PBH overproduction requires w ≲ 0.57 up to 2-σ level for the monochromatic spectrum. Furthermore, including bounds from the cosmic microwave background, we find in general that the mass range of the PBH counterpart is bounded by 10-5 M ⊙ ≲ M PBH ≲ 10-1 M ⊙. Lastly, we find that the PTA signal can explain the microlensing events reported by OGLE for w ~ 0.7. Our work showcases a complete treatment of induced gravitational waves and primordial black holes for general w for future data analysis.
Keywords
- gravitational waves / sources, physics of the early universe, primordial black holes
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Astronomy and Astrophysics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Cosmology and Astroparticle Physics, Vol. 2024, No. 8, 054, 29.08.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Induced gravitational wave interpretation of PTA data
T2 - a complete study for general equation of state
AU - Domènech, Guillem
AU - Pi, Shi
AU - Wang, Ao
AU - Wang, Jianing
N1 - Publisher Copyright: © 2024 IOP Publishing Ltd and Sissa Medialab. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
PY - 2024/8/29
Y1 - 2024/8/29
N2 - We thoroughly study the induced gravitational wave interpretation of the possible gravitational wave background reported by PTA collaborations, considering the unknown equation of state w of the early universe. We perform a Bayesian analysis of the NANOGrav data using the publicly available PTArcade code together with SIGWfast for the numerical integration of the induced gravitational wave spectrum. We focus on two cases: a monochromatic and a log-normal primordial spectrum of fluctuations. For the log-normal spectrum, we show that, while the results are not very sensitive to w when the GW peak is close to the PTA window, radiation domination is out of the 2σ contours when only the infra-red power-law tail contributes. For the monochromatic spectrum, the 2σ bounds yield 0.1 ≲ w ≲ 0.9 so that radiation domination is close to the central value. We also investigate the primordial black hole (PBH) abundance for both monochromatic and log-normal power spectrum. We show that, in general terms, a larger width and stiffer equation of state alleviates the overproduction of PBHs. No PBH overproduction requires w ≲ 0.57 up to 2-σ level for the monochromatic spectrum. Furthermore, including bounds from the cosmic microwave background, we find in general that the mass range of the PBH counterpart is bounded by 10-5 M ⊙ ≲ M PBH ≲ 10-1 M ⊙. Lastly, we find that the PTA signal can explain the microlensing events reported by OGLE for w ~ 0.7. Our work showcases a complete treatment of induced gravitational waves and primordial black holes for general w for future data analysis.
AB - We thoroughly study the induced gravitational wave interpretation of the possible gravitational wave background reported by PTA collaborations, considering the unknown equation of state w of the early universe. We perform a Bayesian analysis of the NANOGrav data using the publicly available PTArcade code together with SIGWfast for the numerical integration of the induced gravitational wave spectrum. We focus on two cases: a monochromatic and a log-normal primordial spectrum of fluctuations. For the log-normal spectrum, we show that, while the results are not very sensitive to w when the GW peak is close to the PTA window, radiation domination is out of the 2σ contours when only the infra-red power-law tail contributes. For the monochromatic spectrum, the 2σ bounds yield 0.1 ≲ w ≲ 0.9 so that radiation domination is close to the central value. We also investigate the primordial black hole (PBH) abundance for both monochromatic and log-normal power spectrum. We show that, in general terms, a larger width and stiffer equation of state alleviates the overproduction of PBHs. No PBH overproduction requires w ≲ 0.57 up to 2-σ level for the monochromatic spectrum. Furthermore, including bounds from the cosmic microwave background, we find in general that the mass range of the PBH counterpart is bounded by 10-5 M ⊙ ≲ M PBH ≲ 10-1 M ⊙. Lastly, we find that the PTA signal can explain the microlensing events reported by OGLE for w ~ 0.7. Our work showcases a complete treatment of induced gravitational waves and primordial black holes for general w for future data analysis.
KW - gravitational waves / sources
KW - physics of the early universe
KW - primordial black holes
UR - http://www.scopus.com/inward/record.url?scp=85202710160&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2402.18965
DO - 10.48550/arXiv.2402.18965
M3 - Article
AN - SCOPUS:85202710160
VL - 2024
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
SN - 1475-7516
IS - 8
M1 - 054
ER -