Details
Original language | English |
---|---|
Pages (from-to) | 1541-53 |
Number of pages | 13 |
Journal | Plant cell reports |
Volume | 30 |
Issue number | 8 |
Publication status | Published - Aug 2011 |
Abstract
To study the developmental transition of chloroplasts from C(3) to C(4) photosynthesis in the terrestrial single-cell C(4) species Bienertia sinuspersici, a regeneration protocol was developed. Stem explant material developed callus either with or without red nodular structures (RNS) when cultured on Murashige-Skoog (MS) salts and vitamins, supplemented with 5 mM phosphate, plus 1 mg L(-1) dichloropenoxy-acetic acid (2,4-D), and 87 mM sucrose (Stage 1 media). Only calli having RNS were able to regenerate plantlets. MS media plus phosphate was used throughout regeneration, with the Stage 2 media containing 2 mg L(-1) 6-benzylaminopurine, 43 mM sucrose and 1.5% soluble starch. Stage 3 media had no hormones or organic sources of carbon, and cultures were grown under ambient (~400 ppm) versus CO(2) enrichment (1.2% CO(2)). When calli without RNS were cultured under Stage 3 conditions with 1.2% CO(2), there was an increase in growth, protein content, and photosystem II yield, while structural and biochemical analyses indicated the cells in the calli had C(3) type photosynthesis. CO(2) enrichment during growth of RNS during Stage 3 had a large effect on regeneration success, increasing efficiency of shoot and root development, size of plantlets, leaf soluble protein, and chlorophyll concentration. Anatomical analysis of plantlets, which developed under 1.2% CO(2), showed leaves developed C(4) type chlorenchyma cells, including expression of key C(4) biochemical enzymes. Increasing salinity in the media, from 0 to 200 mM NaCl, increased tissue osmolality, average plantlet area and regeneration success, but did not affect protein or chlorophyll content.
Keywords
- Carbon Dioxide/metabolism, Chenopodiaceae/growth & development, Chlorophyll/analysis, Culture Media/chemistry, Plant Proteins/analysis, Plant Roots/growth & development, Plant Shoots/growth & development, Regeneration, Sodium Chloride/metabolism, Tissue Culture Techniques
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Plant cell reports, Vol. 30, No. 8, 08.2011, p. 1541-53.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - In vitro cultures and regeneration of Bienertia sinuspersici (Chenopodiaceae) under increasing concentrations of sodium chloride and carbon dioxide
AU - Rosnow, Josh
AU - Offermann, Sascha
AU - Park, Joonho
AU - Okita, Thomas W
AU - Tarlyn, Nathan
AU - Dhingra, Amit
AU - Edwards, Gerald E
N1 - Funding information: Acknowledgments This material is based upon work supported by the National Science Foundation under Grant IBN-0641232. Seeds of Bienertia sinuspersici were kindly provided by Dr. Abdulrahman Alsirhan, Kuwait. We thank the WSU Plant Transformation Center, the Franceschi Microscopy and Imaging Center of Washington State University for use of facilities and for staff assistance, C. Cody for plant growth management, and N. Koteyeva for assistance with graphics.
PY - 2011/8
Y1 - 2011/8
N2 - To study the developmental transition of chloroplasts from C(3) to C(4) photosynthesis in the terrestrial single-cell C(4) species Bienertia sinuspersici, a regeneration protocol was developed. Stem explant material developed callus either with or without red nodular structures (RNS) when cultured on Murashige-Skoog (MS) salts and vitamins, supplemented with 5 mM phosphate, plus 1 mg L(-1) dichloropenoxy-acetic acid (2,4-D), and 87 mM sucrose (Stage 1 media). Only calli having RNS were able to regenerate plantlets. MS media plus phosphate was used throughout regeneration, with the Stage 2 media containing 2 mg L(-1) 6-benzylaminopurine, 43 mM sucrose and 1.5% soluble starch. Stage 3 media had no hormones or organic sources of carbon, and cultures were grown under ambient (~400 ppm) versus CO(2) enrichment (1.2% CO(2)). When calli without RNS were cultured under Stage 3 conditions with 1.2% CO(2), there was an increase in growth, protein content, and photosystem II yield, while structural and biochemical analyses indicated the cells in the calli had C(3) type photosynthesis. CO(2) enrichment during growth of RNS during Stage 3 had a large effect on regeneration success, increasing efficiency of shoot and root development, size of plantlets, leaf soluble protein, and chlorophyll concentration. Anatomical analysis of plantlets, which developed under 1.2% CO(2), showed leaves developed C(4) type chlorenchyma cells, including expression of key C(4) biochemical enzymes. Increasing salinity in the media, from 0 to 200 mM NaCl, increased tissue osmolality, average plantlet area and regeneration success, but did not affect protein or chlorophyll content.
AB - To study the developmental transition of chloroplasts from C(3) to C(4) photosynthesis in the terrestrial single-cell C(4) species Bienertia sinuspersici, a regeneration protocol was developed. Stem explant material developed callus either with or without red nodular structures (RNS) when cultured on Murashige-Skoog (MS) salts and vitamins, supplemented with 5 mM phosphate, plus 1 mg L(-1) dichloropenoxy-acetic acid (2,4-D), and 87 mM sucrose (Stage 1 media). Only calli having RNS were able to regenerate plantlets. MS media plus phosphate was used throughout regeneration, with the Stage 2 media containing 2 mg L(-1) 6-benzylaminopurine, 43 mM sucrose and 1.5% soluble starch. Stage 3 media had no hormones or organic sources of carbon, and cultures were grown under ambient (~400 ppm) versus CO(2) enrichment (1.2% CO(2)). When calli without RNS were cultured under Stage 3 conditions with 1.2% CO(2), there was an increase in growth, protein content, and photosystem II yield, while structural and biochemical analyses indicated the cells in the calli had C(3) type photosynthesis. CO(2) enrichment during growth of RNS during Stage 3 had a large effect on regeneration success, increasing efficiency of shoot and root development, size of plantlets, leaf soluble protein, and chlorophyll concentration. Anatomical analysis of plantlets, which developed under 1.2% CO(2), showed leaves developed C(4) type chlorenchyma cells, including expression of key C(4) biochemical enzymes. Increasing salinity in the media, from 0 to 200 mM NaCl, increased tissue osmolality, average plantlet area and regeneration success, but did not affect protein or chlorophyll content.
KW - Carbon Dioxide/metabolism
KW - Chenopodiaceae/growth & development
KW - Chlorophyll/analysis
KW - Culture Media/chemistry
KW - Plant Proteins/analysis
KW - Plant Roots/growth & development
KW - Plant Shoots/growth & development
KW - Regeneration
KW - Sodium Chloride/metabolism
KW - Tissue Culture Techniques
U2 - 10.1007/s00299-011-1067-1
DO - 10.1007/s00299-011-1067-1
M3 - Article
C2 - 21476090
VL - 30
SP - 1541
EP - 1553
JO - Plant cell reports
JF - Plant cell reports
SN - 0721-085X
IS - 8
ER -