Details
Original language | English |
---|---|
Article number | 117243 |
Journal | GEODERMA |
Volume | 456 |
Early online date | 12 Mar 2025 |
Publication status | Published - Apr 2025 |
Abstract
Soil pH is the master variable of soil properties and understanding its spatiotemporal changes in situ is key to unveiling numerous biogeochemical processes. The development of non-invasive imaging techniques provides the possibility to visualize and localize soil pH changes depending on various factors, e.g. fertilization and climate. Herein, the optodes pH mapping system was used to study the effects of eight fertilizer types including chicken manure, Ca(NO3)2, Mg(NO3)2, KNO3, NH4NO3, (NH4)2SO4, NH4H2PO4, and urea on the spatiotemporal distribution of soil pH with and without liming at 10 °C and 25 °C. Ammonium-based fertilizers, especially NH4NO3, (NH4)2SO4, and NH4H2PO4 strongly decreased soil pH by a maximum of 1.4 ± 0.16 units at both temperatures. The 0–2 cm, where fertilizers were applied, had the highest pH decreases, from where the acidity rapidly diffused to depth. The acidified depth extended down to 4.5 ± 0.14 cm over 60 d. Chicken manure increased the pH within 5 d, but the pH decreased again after 60 d. Soil temperature was a strong controller of acidity generation and transport to depth after fertilization: pH decreased by 0.1 ± 0.07–0.3 ± 0.07 units more at 25 °C than 10 °C due to increased activity of nitrifying microorganisms, and higher temperature accelerated the spatiotemporal dynamics of soil acidity. Although pH increased shortly after liming compared to unlimed soils, it decreased after adding ammonium-based fertilizers. Therefore, N fertilizer types and temperature should be considered for having a more efficient fertilization management with less consequences for soil acidification. The planar optode is a powerful non-invasive imaging technique that enables in situ visualization of the spatiotemporal changes of soil pH profile after fertilization.
Keywords
- Carbonates, Nitrogen fertilizers, pH mapping, Soil acidification, Temperature
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Soil Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: GEODERMA, Vol. 456, 117243, 04.2025.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - In situ visualization of soil profile acidification and processes following nitrogen fertilization and liming
AU - Tao, Jingjing
AU - Fan, Lichao
AU - Jiang, Tao
AU - Song, Xiaona
AU - Zhao, Mengzhen
AU - Zhou, Jianbin
AU - Kuzyakov, Yakov
AU - Zamanian, Kazem
N1 - Publisher Copyright: © 2025 The Author(s)
PY - 2025/4
Y1 - 2025/4
N2 - Soil pH is the master variable of soil properties and understanding its spatiotemporal changes in situ is key to unveiling numerous biogeochemical processes. The development of non-invasive imaging techniques provides the possibility to visualize and localize soil pH changes depending on various factors, e.g. fertilization and climate. Herein, the optodes pH mapping system was used to study the effects of eight fertilizer types including chicken manure, Ca(NO3)2, Mg(NO3)2, KNO3, NH4NO3, (NH4)2SO4, NH4H2PO4, and urea on the spatiotemporal distribution of soil pH with and without liming at 10 °C and 25 °C. Ammonium-based fertilizers, especially NH4NO3, (NH4)2SO4, and NH4H2PO4 strongly decreased soil pH by a maximum of 1.4 ± 0.16 units at both temperatures. The 0–2 cm, where fertilizers were applied, had the highest pH decreases, from where the acidity rapidly diffused to depth. The acidified depth extended down to 4.5 ± 0.14 cm over 60 d. Chicken manure increased the pH within 5 d, but the pH decreased again after 60 d. Soil temperature was a strong controller of acidity generation and transport to depth after fertilization: pH decreased by 0.1 ± 0.07–0.3 ± 0.07 units more at 25 °C than 10 °C due to increased activity of nitrifying microorganisms, and higher temperature accelerated the spatiotemporal dynamics of soil acidity. Although pH increased shortly after liming compared to unlimed soils, it decreased after adding ammonium-based fertilizers. Therefore, N fertilizer types and temperature should be considered for having a more efficient fertilization management with less consequences for soil acidification. The planar optode is a powerful non-invasive imaging technique that enables in situ visualization of the spatiotemporal changes of soil pH profile after fertilization.
AB - Soil pH is the master variable of soil properties and understanding its spatiotemporal changes in situ is key to unveiling numerous biogeochemical processes. The development of non-invasive imaging techniques provides the possibility to visualize and localize soil pH changes depending on various factors, e.g. fertilization and climate. Herein, the optodes pH mapping system was used to study the effects of eight fertilizer types including chicken manure, Ca(NO3)2, Mg(NO3)2, KNO3, NH4NO3, (NH4)2SO4, NH4H2PO4, and urea on the spatiotemporal distribution of soil pH with and without liming at 10 °C and 25 °C. Ammonium-based fertilizers, especially NH4NO3, (NH4)2SO4, and NH4H2PO4 strongly decreased soil pH by a maximum of 1.4 ± 0.16 units at both temperatures. The 0–2 cm, where fertilizers were applied, had the highest pH decreases, from where the acidity rapidly diffused to depth. The acidified depth extended down to 4.5 ± 0.14 cm over 60 d. Chicken manure increased the pH within 5 d, but the pH decreased again after 60 d. Soil temperature was a strong controller of acidity generation and transport to depth after fertilization: pH decreased by 0.1 ± 0.07–0.3 ± 0.07 units more at 25 °C than 10 °C due to increased activity of nitrifying microorganisms, and higher temperature accelerated the spatiotemporal dynamics of soil acidity. Although pH increased shortly after liming compared to unlimed soils, it decreased after adding ammonium-based fertilizers. Therefore, N fertilizer types and temperature should be considered for having a more efficient fertilization management with less consequences for soil acidification. The planar optode is a powerful non-invasive imaging technique that enables in situ visualization of the spatiotemporal changes of soil pH profile after fertilization.
KW - Carbonates
KW - Nitrogen fertilizers
KW - pH mapping
KW - Soil acidification
KW - Temperature
UR - http://www.scopus.com/inward/record.url?scp=86000790458&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2025.117243
DO - 10.1016/j.geoderma.2025.117243
M3 - Article
AN - SCOPUS:86000790458
VL - 456
JO - GEODERMA
JF - GEODERMA
SN - 0016-7061
M1 - 117243
ER -