Details
Original language | English |
---|---|
Pages (from-to) | 3677-3688 |
Number of pages | 12 |
Journal | Geochimica et cosmochimica acta |
Volume | 70 |
Issue number | 14 |
Early online date | 21 Jun 2006 |
Publication status | Published - 15 Jul 2006 |
Abstract
The feasibility of in situ stable Fe isotope ratio measurements using UV-femtosecond laser ablation connected to a multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been investigated. Different types of matrices, independently determined by solution MC-ICP-MS after chromatographic separation of Fe, have been analysed by laser ablation using the isotopically certified iron reference material IRMM-014 as the bracketing standard. The samples have been pure iron metal (JM Puratronic), Fe-meteorites (North Chile, Glenormiston and Toluca), the meteorite phases kamacite and taenite in Toluca and Fe-sulphides. Furthermore, Fe isotope ratios from hydrothermal hematite, siderite and goethite from an old mining area in the Schwarzwald, Germany, and of magnetite from the metamorphic Biwabik iron formation have been determined. The results show that a precision of better than 0.1‰ (2 sigma) can be achieved with laser ablation and that all the results obtained agree with those determined by solution ICP to better than 0.1‰. This precision and accuracy is achievable in both raster and spot ablation mode. A matrix-matched bracketing standard is not required, and all these materials can be measured accurately against a metal standard. The hydrothermal minerals show significant Fe isotope zonations. In some samples the range of δ56Fe in a single aggregate encompasses the entire spectrum of ratios found by bulk solution analyses in multiple samples distributed over the whole mining district. For example, isotopic zonations found in secondary fibrous hematites show a continuous change in the δ56Fe values from -0.5‰ in the core to -1.8‰ in the rim. Primary hydrothermal siderite shows the reverse pattern with lighter values in the core than in the rim. While the siderite is thought to record primary fluid histories, the hematite pattern is interpreted as a reworked isotopic signature generated by oxic dissolution of primary zoned siderite and immediate close range re-precipitation of the oxidized Fe. Abrupt changes are documented for secondary goethite showing a distinct overgrowth that is 0.4‰ lighter than the core of the grain. If indeed Fe isotopes in secondary minerals from hydrothermal ore deposits record the initial isotopic signatures of their precursor minerals, and these in turn record hydrothermal fluid histories, then the tools are in place for a detailed reconstruction of the deposit's genesis. We expect similar observations from other Fe-rich deposits formed at intermediate and low-temperatures (e.g. banded iron formations). Laser ablation now provides us with the spatial resolution that adds a further dimension to our interpretation of stable Fe-isotope fractionation.
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Geochimica et cosmochimica acta, Vol. 70, No. 14, 15.07.2006, p. 3677-3688.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes
AU - Horn, Ingo
AU - von Blanckenburg, Friedhelm
AU - Schoenberg, Ronny
AU - Steinhoefel, Grit
AU - Markl, Gregor
N1 - Funding Information: We acknowledge the support for this study by the German Science Foundation (DFG) Grant HO 3257/1 and the Volkswagenstiftung. W. Hurkuck, B. Aichinger, and O. Dietrich are thanked for technical support. We are grateful to A. Anbar and S. Weyer for their constructive reviews, and M. Rehkämper for efficient editorial handling.
PY - 2006/7/15
Y1 - 2006/7/15
N2 - The feasibility of in situ stable Fe isotope ratio measurements using UV-femtosecond laser ablation connected to a multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been investigated. Different types of matrices, independently determined by solution MC-ICP-MS after chromatographic separation of Fe, have been analysed by laser ablation using the isotopically certified iron reference material IRMM-014 as the bracketing standard. The samples have been pure iron metal (JM Puratronic), Fe-meteorites (North Chile, Glenormiston and Toluca), the meteorite phases kamacite and taenite in Toluca and Fe-sulphides. Furthermore, Fe isotope ratios from hydrothermal hematite, siderite and goethite from an old mining area in the Schwarzwald, Germany, and of magnetite from the metamorphic Biwabik iron formation have been determined. The results show that a precision of better than 0.1‰ (2 sigma) can be achieved with laser ablation and that all the results obtained agree with those determined by solution ICP to better than 0.1‰. This precision and accuracy is achievable in both raster and spot ablation mode. A matrix-matched bracketing standard is not required, and all these materials can be measured accurately against a metal standard. The hydrothermal minerals show significant Fe isotope zonations. In some samples the range of δ56Fe in a single aggregate encompasses the entire spectrum of ratios found by bulk solution analyses in multiple samples distributed over the whole mining district. For example, isotopic zonations found in secondary fibrous hematites show a continuous change in the δ56Fe values from -0.5‰ in the core to -1.8‰ in the rim. Primary hydrothermal siderite shows the reverse pattern with lighter values in the core than in the rim. While the siderite is thought to record primary fluid histories, the hematite pattern is interpreted as a reworked isotopic signature generated by oxic dissolution of primary zoned siderite and immediate close range re-precipitation of the oxidized Fe. Abrupt changes are documented for secondary goethite showing a distinct overgrowth that is 0.4‰ lighter than the core of the grain. If indeed Fe isotopes in secondary minerals from hydrothermal ore deposits record the initial isotopic signatures of their precursor minerals, and these in turn record hydrothermal fluid histories, then the tools are in place for a detailed reconstruction of the deposit's genesis. We expect similar observations from other Fe-rich deposits formed at intermediate and low-temperatures (e.g. banded iron formations). Laser ablation now provides us with the spatial resolution that adds a further dimension to our interpretation of stable Fe-isotope fractionation.
AB - The feasibility of in situ stable Fe isotope ratio measurements using UV-femtosecond laser ablation connected to a multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been investigated. Different types of matrices, independently determined by solution MC-ICP-MS after chromatographic separation of Fe, have been analysed by laser ablation using the isotopically certified iron reference material IRMM-014 as the bracketing standard. The samples have been pure iron metal (JM Puratronic), Fe-meteorites (North Chile, Glenormiston and Toluca), the meteorite phases kamacite and taenite in Toluca and Fe-sulphides. Furthermore, Fe isotope ratios from hydrothermal hematite, siderite and goethite from an old mining area in the Schwarzwald, Germany, and of magnetite from the metamorphic Biwabik iron formation have been determined. The results show that a precision of better than 0.1‰ (2 sigma) can be achieved with laser ablation and that all the results obtained agree with those determined by solution ICP to better than 0.1‰. This precision and accuracy is achievable in both raster and spot ablation mode. A matrix-matched bracketing standard is not required, and all these materials can be measured accurately against a metal standard. The hydrothermal minerals show significant Fe isotope zonations. In some samples the range of δ56Fe in a single aggregate encompasses the entire spectrum of ratios found by bulk solution analyses in multiple samples distributed over the whole mining district. For example, isotopic zonations found in secondary fibrous hematites show a continuous change in the δ56Fe values from -0.5‰ in the core to -1.8‰ in the rim. Primary hydrothermal siderite shows the reverse pattern with lighter values in the core than in the rim. While the siderite is thought to record primary fluid histories, the hematite pattern is interpreted as a reworked isotopic signature generated by oxic dissolution of primary zoned siderite and immediate close range re-precipitation of the oxidized Fe. Abrupt changes are documented for secondary goethite showing a distinct overgrowth that is 0.4‰ lighter than the core of the grain. If indeed Fe isotopes in secondary minerals from hydrothermal ore deposits record the initial isotopic signatures of their precursor minerals, and these in turn record hydrothermal fluid histories, then the tools are in place for a detailed reconstruction of the deposit's genesis. We expect similar observations from other Fe-rich deposits formed at intermediate and low-temperatures (e.g. banded iron formations). Laser ablation now provides us with the spatial resolution that adds a further dimension to our interpretation of stable Fe-isotope fractionation.
UR - http://www.scopus.com/inward/record.url?scp=33745686003&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2006.05.002
DO - 10.1016/j.gca.2006.05.002
M3 - Article
AN - SCOPUS:33745686003
VL - 70
SP - 3677
EP - 3688
JO - Geochimica et cosmochimica acta
JF - Geochimica et cosmochimica acta
SN - 0016-7037
IS - 14
ER -