Details
Original language | English |
---|---|
Article number | 3356 |
Journal | MOLECULES |
Volume | 24 |
Issue number | 18 |
Early online date | 15 Sept 2019 |
Publication status | E-pub ahead of print - 15 Sept 2019 |
Abstract
The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.
Keywords
- (+)-zizaene, Chrysopogon zizanioides, Expanded bed adsorption, In situ product recovery, Khusimene, Khusimol, Sesquiterpenes, Terpenes, Vetiver essential oil
ASJC Scopus subject areas
- Chemistry(all)
- Analytical Chemistry
- Chemistry(all)
- Chemistry (miscellaneous)
- Biochemistry, Genetics and Molecular Biology(all)
- Molecular Medicine
- Pharmacology, Toxicology and Pharmaceutics(all)
- Pharmaceutical Science
- Pharmacology, Toxicology and Pharmaceutics(all)
- Drug Discovery
- Chemistry(all)
- Physical and Theoretical Chemistry
- Chemistry(all)
- Organic Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: MOLECULES, Vol. 24, No. 18, 3356, 15.09.2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli
AU - Aguilar, Francisco
AU - Scheper, Thomas
AU - Beutel, Sascha
N1 - Funding information: This research was funded by the PINN program from the Ministry of Science, Technology and Telecommunications of Costa Rica (MICITT), grant PED-058-2015-1, and by the Open Access Fund of the Leibniz Universität Hannover.
PY - 2019/9/15
Y1 - 2019/9/15
N2 - The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.
AB - The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.
KW - (+)-zizaene
KW - Chrysopogon zizanioides
KW - Expanded bed adsorption
KW - In situ product recovery
KW - Khusimene
KW - Khusimol
KW - Sesquiterpenes
KW - Terpenes
KW - Vetiver essential oil
UR - http://www.scopus.com/inward/record.url?scp=85072291038&partnerID=8YFLogxK
U2 - 10.3390/molecules24183356
DO - 10.3390/molecules24183356
M3 - Article
C2 - 31540161
AN - SCOPUS:85072291038
VL - 24
JO - MOLECULES
JF - MOLECULES
SN - 1420-3049
IS - 18
M1 - 3356
ER -