Details
Original language | English |
---|---|
Article number | 011102 |
Journal | Physical review letters |
Volume | 126 |
Issue number | 1 |
Publication status | Published - 6 Jan 2021 |
Externally published | Yes |
Abstract
We compare two optical clocks based on the S21/2(F=0)→D23/2(F=2) electric quadrupole (E2) and the S21/2(F=0)→F27/2(F=3) electric octupole (E3) transition of Yb171+ and measure the frequency ratio νE3/νE2=0.932829404530965376(32), improving upon previous measurements by an order of magnitude. Using two caesium fountain clocks, we find νE3=642121496772645.10(8) Hz, the most accurate determination of an optical transition frequency to date. Repeated measurements of both quantities over several years are analyzed for potential violations of local position invariance. We improve by factors of about 20 and 2 the limits for fractional temporal variations of the fine structure constant α to 1.0(1.1)×10-18/yr and of the proton-to-electron mass ratio μ to -8(36)×10-18/yr. Using the annual variation of the Sun's gravitational potential at Earth φ, we improve limits for a potential coupling of both constants to gravity, (c2/α)(dα/dφ)=14(11)×10-9 and (c2/μ)(dμ/dφ)=7(45)×10-8.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical review letters, Vol. 126, No. 1, 011102, 06.01.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Improved Limits for Violations of Local Position Invariance from Atomic Clock Comparisons
AU - Lange, R.
AU - Huntemann, N.
AU - Rahm, J. M.
AU - Sanner, C.
AU - Shao, H.
AU - Lipphardt, B.
AU - Tamm, Chr
AU - Weyers, S.
AU - Peik, E.
N1 - Publisher Copyright: © 2021 authors. Published by the American Physical Society.
PY - 2021/1/6
Y1 - 2021/1/6
N2 - We compare two optical clocks based on the S21/2(F=0)→D23/2(F=2) electric quadrupole (E2) and the S21/2(F=0)→F27/2(F=3) electric octupole (E3) transition of Yb171+ and measure the frequency ratio νE3/νE2=0.932829404530965376(32), improving upon previous measurements by an order of magnitude. Using two caesium fountain clocks, we find νE3=642121496772645.10(8) Hz, the most accurate determination of an optical transition frequency to date. Repeated measurements of both quantities over several years are analyzed for potential violations of local position invariance. We improve by factors of about 20 and 2 the limits for fractional temporal variations of the fine structure constant α to 1.0(1.1)×10-18/yr and of the proton-to-electron mass ratio μ to -8(36)×10-18/yr. Using the annual variation of the Sun's gravitational potential at Earth φ, we improve limits for a potential coupling of both constants to gravity, (c2/α)(dα/dφ)=14(11)×10-9 and (c2/μ)(dμ/dφ)=7(45)×10-8.
AB - We compare two optical clocks based on the S21/2(F=0)→D23/2(F=2) electric quadrupole (E2) and the S21/2(F=0)→F27/2(F=3) electric octupole (E3) transition of Yb171+ and measure the frequency ratio νE3/νE2=0.932829404530965376(32), improving upon previous measurements by an order of magnitude. Using two caesium fountain clocks, we find νE3=642121496772645.10(8) Hz, the most accurate determination of an optical transition frequency to date. Repeated measurements of both quantities over several years are analyzed for potential violations of local position invariance. We improve by factors of about 20 and 2 the limits for fractional temporal variations of the fine structure constant α to 1.0(1.1)×10-18/yr and of the proton-to-electron mass ratio μ to -8(36)×10-18/yr. Using the annual variation of the Sun's gravitational potential at Earth φ, we improve limits for a potential coupling of both constants to gravity, (c2/α)(dα/dφ)=14(11)×10-9 and (c2/μ)(dμ/dφ)=7(45)×10-8.
UR - http://www.scopus.com/inward/record.url?scp=85099153551&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.126.011102
DO - 10.1103/PhysRevLett.126.011102
M3 - Article
C2 - 33480794
AN - SCOPUS:85099153551
VL - 126
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 1
M1 - 011102
ER -