Details
Original language | English |
---|---|
Article number | 133 |
Journal | Agriculture (Switzerland) |
Volume | 13 |
Issue number | 1 |
Publication status | Published - 4 Jan 2023 |
Abstract
In conservation agriculture, conservation tillage potentially influences the physical, chemical, and biological quality of the soil. Although the effects of conservation agriculture on the soil’s physical properties have been studied in conventional management systems, studies on organic farming systems, especially concerning long-term changes, are scarce. This study summarizes the results of physical and mechanical soil parameters obtained over the initial 10 years of different conservation management treatments (plowing versus reduced tillage with and without compost application) in an organic field trial conducted in central Germany. Moreover, as a research objective, the effects of soil conservation measures on soil’s physical quality were evaluated. Differences in the soil’s physical quality during treatments were mainly detected in the topsoil. At a depth of 0.10–0.24 m, the total porosity and air capacity were lower, and the bulk density was higher in the reduced-tillage systems, compared to those of the plowed treatments. Additionally, the soil’s mechanical stability (precompression stress) was higher at a depth of 0.10 m for reduced-tillage systems combined with compost application. In addition, the soil’s aggregate stability was enhanced in the reduced-tillage systems (higher mean weight diameter, as determined via wet sieving). Overall, the reduced-tillage treatments did not exceed the critical physical values of the soil, nor affect the functionality of the soil (saturated hydraulic conductivity), thereby demonstrating its feasibility as a sustainable technique for organic farming. Future studies should include measures to ameliorate compaction zones in reduced-tillage treatments, e.g., by applying subsoiling techniques in combination with deep-rooting crops to prevent limited rooting space resulting from the high mechanical impedance, especially under dry soil conditions.
Keywords
- aggregate stability, bulk density, long-term experiment, organic reduced tillage, saturated hydraulic conductivity, soil water content, water retention curve
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Food Science
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Agriculture (Switzerland), Vol. 13, No. 1, 133, 04.01.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Impact of Ten Years Conservation Tillage in Organic Farming on Soil Physical Properties in a Loess Soil—Northern Hesse, Germany
AU - Bilibio, Carolina
AU - Uteau, Daniel
AU - Horvat, Malte
AU - Rosskopf, Ulla
AU - Junge, Stephan Martin
AU - Finckh, Maria Renate
AU - Peth, Stephan
N1 - Funding Information: The long-term experiment (LTE), as installed in the framework of a European Union FP7 Project no.289277 (OSCAR), “Optimizing Subsidiary Crop Application in Rotations”. 2015–2020, was in part financed by the BMBF project INSUSFAR (INnovative approaches to optimize genetic diversity for SUStainable FARming systems of the future) Project No: 031A350C. Since 2020, the funding has been obtained through the project AKHWA: Adaptation to climate change in Hesse—increasing soil water-retention through regenerative farming strategies, which is funded by the Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection.
PY - 2023/1/4
Y1 - 2023/1/4
N2 - In conservation agriculture, conservation tillage potentially influences the physical, chemical, and biological quality of the soil. Although the effects of conservation agriculture on the soil’s physical properties have been studied in conventional management systems, studies on organic farming systems, especially concerning long-term changes, are scarce. This study summarizes the results of physical and mechanical soil parameters obtained over the initial 10 years of different conservation management treatments (plowing versus reduced tillage with and without compost application) in an organic field trial conducted in central Germany. Moreover, as a research objective, the effects of soil conservation measures on soil’s physical quality were evaluated. Differences in the soil’s physical quality during treatments were mainly detected in the topsoil. At a depth of 0.10–0.24 m, the total porosity and air capacity were lower, and the bulk density was higher in the reduced-tillage systems, compared to those of the plowed treatments. Additionally, the soil’s mechanical stability (precompression stress) was higher at a depth of 0.10 m for reduced-tillage systems combined with compost application. In addition, the soil’s aggregate stability was enhanced in the reduced-tillage systems (higher mean weight diameter, as determined via wet sieving). Overall, the reduced-tillage treatments did not exceed the critical physical values of the soil, nor affect the functionality of the soil (saturated hydraulic conductivity), thereby demonstrating its feasibility as a sustainable technique for organic farming. Future studies should include measures to ameliorate compaction zones in reduced-tillage treatments, e.g., by applying subsoiling techniques in combination with deep-rooting crops to prevent limited rooting space resulting from the high mechanical impedance, especially under dry soil conditions.
AB - In conservation agriculture, conservation tillage potentially influences the physical, chemical, and biological quality of the soil. Although the effects of conservation agriculture on the soil’s physical properties have been studied in conventional management systems, studies on organic farming systems, especially concerning long-term changes, are scarce. This study summarizes the results of physical and mechanical soil parameters obtained over the initial 10 years of different conservation management treatments (plowing versus reduced tillage with and without compost application) in an organic field trial conducted in central Germany. Moreover, as a research objective, the effects of soil conservation measures on soil’s physical quality were evaluated. Differences in the soil’s physical quality during treatments were mainly detected in the topsoil. At a depth of 0.10–0.24 m, the total porosity and air capacity were lower, and the bulk density was higher in the reduced-tillage systems, compared to those of the plowed treatments. Additionally, the soil’s mechanical stability (precompression stress) was higher at a depth of 0.10 m for reduced-tillage systems combined with compost application. In addition, the soil’s aggregate stability was enhanced in the reduced-tillage systems (higher mean weight diameter, as determined via wet sieving). Overall, the reduced-tillage treatments did not exceed the critical physical values of the soil, nor affect the functionality of the soil (saturated hydraulic conductivity), thereby demonstrating its feasibility as a sustainable technique for organic farming. Future studies should include measures to ameliorate compaction zones in reduced-tillage treatments, e.g., by applying subsoiling techniques in combination with deep-rooting crops to prevent limited rooting space resulting from the high mechanical impedance, especially under dry soil conditions.
KW - aggregate stability
KW - bulk density
KW - long-term experiment
KW - organic reduced tillage
KW - saturated hydraulic conductivity
KW - soil water content
KW - water retention curve
UR - http://www.scopus.com/inward/record.url?scp=85146687427&partnerID=8YFLogxK
U2 - 10.3390/agriculture13010133
DO - 10.3390/agriculture13010133
M3 - Article
AN - SCOPUS:85146687427
VL - 13
JO - Agriculture (Switzerland)
JF - Agriculture (Switzerland)
IS - 1
M1 - 133
ER -