Impact of natural organic matter coatings on the microbial reduction of iron oxides

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Martin Luther University Halle-Wittenberg
  • Federal Institute for Geosciences and Natural Resources (BGR)
  • State Authority for Mining, Energy and Geology (LBEG)
View graph of relations

Details

Original languageEnglish
Pages (from-to)223-248
Number of pages26
JournalGeochimica et cosmochimica acta
Volume224
Early online date11 Jan 2018
Publication statusPublished - 1 Mar 2018

Abstract

Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L−1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

Keywords

    Extracellular polymeric substances, Geobacter metallireducens, Iron oxyhydroxides, Microbial reduction, Mineral-organic associations, Natural organic matter, Shewanella putrefaciens

ASJC Scopus subject areas

Cite this

Impact of natural organic matter coatings on the microbial reduction of iron oxides. / Poggenburg, Christine; Mikutta, Robert; Schippers, Axel et al.
In: Geochimica et cosmochimica acta, Vol. 224, 01.03.2018, p. 223-248.

Research output: Contribution to journalArticleResearchpeer review

Poggenburg C, Mikutta R, Schippers A, Dohrmann R, Guggenberger G. Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochimica et cosmochimica acta. 2018 Mar 1;224:223-248. Epub 2018 Jan 11. doi: 10.1016/j.gca.2018.01.004
Poggenburg, Christine ; Mikutta, Robert ; Schippers, Axel et al. / Impact of natural organic matter coatings on the microbial reduction of iron oxides. In: Geochimica et cosmochimica acta. 2018 ; Vol. 224. pp. 223-248.
Download
@article{c5ad086f7d884fb08b0789e591ef7c32,
title = "Impact of natural organic matter coatings on the microbial reduction of iron oxides",
abstract = "Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L−1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.",
keywords = "Extracellular polymeric substances, Geobacter metallireducens, Iron oxyhydroxides, Microbial reduction, Mineral-organic associations, Natural organic matter, Shewanella putrefaciens",
author = "Christine Poggenburg and Robert Mikutta and Axel Schippers and Reiner Dohrmann and Georg Guggenberger",
note = "Publisher Copyright: {\textcopyright} 2018 Elsevier Ltd",
year = "2018",
month = mar,
day = "1",
doi = "10.1016/j.gca.2018.01.004",
language = "English",
volume = "224",
pages = "223--248",
journal = "Geochimica et cosmochimica acta",
issn = "0016-7037",
publisher = "Elsevier Ltd.",

}

Download

TY - JOUR

T1 - Impact of natural organic matter coatings on the microbial reduction of iron oxides

AU - Poggenburg, Christine

AU - Mikutta, Robert

AU - Schippers, Axel

AU - Dohrmann, Reiner

AU - Guggenberger, Georg

N1 - Publisher Copyright: © 2018 Elsevier Ltd

PY - 2018/3/1

Y1 - 2018/3/1

N2 - Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L−1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

AB - Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L−1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

KW - Extracellular polymeric substances

KW - Geobacter metallireducens

KW - Iron oxyhydroxides

KW - Microbial reduction

KW - Mineral-organic associations

KW - Natural organic matter

KW - Shewanella putrefaciens

UR - http://www.scopus.com/inward/record.url?scp=85041374040&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2018.01.004

DO - 10.1016/j.gca.2018.01.004

M3 - Article

AN - SCOPUS:85041374040

VL - 224

SP - 223

EP - 248

JO - Geochimica et cosmochimica acta

JF - Geochimica et cosmochimica acta

SN - 0016-7037

ER -

By the same author(s)