Details
Original language | English |
---|---|
Pages (from-to) | 84-90 |
Number of pages | 7 |
Journal | Energy Procedia |
Volume | 124 |
Publication status | Published - 21 Sept 2017 |
Event | 7th International Conference on Silicon Photovoltaics, SiliconPV 2017 - Freiburg, Germany Duration: 3 Apr 2017 → 5 Apr 2017 |
Abstract
The fill factor determined from a measured current-voltage characteristic of a bare solar cell depends on the number and positions of the electrical contacting probes. Nine different geometries for contacting the front side busbars are used to measure the current-voltage (I-V) characteristics of a 5 busbar industrial-type passivated emitter and rear totally diffused (PERT) solar cell under standard testing conditions. The fill factors of the measured I-V characteristics vary from 78.5 %abs to 80.6 %abs. We further measure the contacting resistance of 3 different contacting probes to estimate the sensitivity of measurements with different contacting geometries on random resistance variations. The contacting resistance is 60 mΩ for nine-point probes and 80 mΩ for four- and single-point probes. We determine the magnitude of contacting resistance variations from measurements at different probe positions to be ±30 mΩ. Using this variation, we perform numerical simulations and find a larger sensitivity on random resistance variations for tandem- (pairs of current- and sense probes) compared to triplet (one sense- between two current probes) configurations. The corresponding fill factor deviation is approximately 0.1%abs for tandem configurations when the contacting resistances of up to two current probes are altered. The sensitivity for triplet configurations is negligible.
Keywords
- Characterization of PV, Current-voltage characteristics, Fill Factor
ASJC Scopus subject areas
- Energy(all)
- General Energy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Energy Procedia, Vol. 124, 21.09.2017, p. 84-90.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Impact of contacting geometries on measured fill factors
AU - Kruse, Christian N.
AU - Wolf, Martin
AU - Schinke, Carsten
AU - Hinken, David
AU - Brendel, Rolf
AU - Bothe, Karsten
N1 - Publisher Copyright: © 2017 The Authors. Published by Elsevier Ltd. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/9/21
Y1 - 2017/9/21
N2 - The fill factor determined from a measured current-voltage characteristic of a bare solar cell depends on the number and positions of the electrical contacting probes. Nine different geometries for contacting the front side busbars are used to measure the current-voltage (I-V) characteristics of a 5 busbar industrial-type passivated emitter and rear totally diffused (PERT) solar cell under standard testing conditions. The fill factors of the measured I-V characteristics vary from 78.5 %abs to 80.6 %abs. We further measure the contacting resistance of 3 different contacting probes to estimate the sensitivity of measurements with different contacting geometries on random resistance variations. The contacting resistance is 60 mΩ for nine-point probes and 80 mΩ for four- and single-point probes. We determine the magnitude of contacting resistance variations from measurements at different probe positions to be ±30 mΩ. Using this variation, we perform numerical simulations and find a larger sensitivity on random resistance variations for tandem- (pairs of current- and sense probes) compared to triplet (one sense- between two current probes) configurations. The corresponding fill factor deviation is approximately 0.1%abs for tandem configurations when the contacting resistances of up to two current probes are altered. The sensitivity for triplet configurations is negligible.
AB - The fill factor determined from a measured current-voltage characteristic of a bare solar cell depends on the number and positions of the electrical contacting probes. Nine different geometries for contacting the front side busbars are used to measure the current-voltage (I-V) characteristics of a 5 busbar industrial-type passivated emitter and rear totally diffused (PERT) solar cell under standard testing conditions. The fill factors of the measured I-V characteristics vary from 78.5 %abs to 80.6 %abs. We further measure the contacting resistance of 3 different contacting probes to estimate the sensitivity of measurements with different contacting geometries on random resistance variations. The contacting resistance is 60 mΩ for nine-point probes and 80 mΩ for four- and single-point probes. We determine the magnitude of contacting resistance variations from measurements at different probe positions to be ±30 mΩ. Using this variation, we perform numerical simulations and find a larger sensitivity on random resistance variations for tandem- (pairs of current- and sense probes) compared to triplet (one sense- between two current probes) configurations. The corresponding fill factor deviation is approximately 0.1%abs for tandem configurations when the contacting resistances of up to two current probes are altered. The sensitivity for triplet configurations is negligible.
KW - Characterization of PV
KW - Current-voltage characteristics
KW - Fill Factor
UR - http://www.scopus.com/inward/record.url?scp=85031924755&partnerID=8YFLogxK
U2 - 10.1016/j.egypro.2017.09.329
DO - 10.1016/j.egypro.2017.09.329
M3 - Conference article
AN - SCOPUS:85031924755
VL - 124
SP - 84
EP - 90
JO - Energy Procedia
JF - Energy Procedia
SN - 1876-6102
T2 - 7th International Conference on Silicon Photovoltaics, SiliconPV 2017
Y2 - 3 April 2017 through 5 April 2017
ER -