Hydrogen defects in feldspars: defect properties and implications for water solubility in feldspar

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Harald Behrens

Research Organisations

View graph of relations

Details

Original languageEnglish
Article number8
JournalPhysics and chemistry of minerals
Volume48
Issue number2
Early online date18 Jan 2021
Publication statusPublished - Feb 2021

Abstract

Hydrogen defects can strongly affect mechanical and chemical properties of feldspars. To get insight into the behavior of such defects, alkali feldspar and plagioclase of igneous origin were studied combining IR spectroscopy with heating experiments under well-controlled conditions. Near-infrared spectra show that OH groups are the predominant hydrous species in these feldspars but presence of minor amounts of molecular H2O cannot be excluded. Short-term annealing at 400–800 °C produces a small but significant irreversible change in the OH stretching vibration band which is attributed to relaxation of the feldspar structure. Polarized mid-infrared spectra of sanidine, adularia, and plagioclase recorded in situ at temperatures up to 600 °C show reversible shifts of maxima toward higher wavenumber and an overall decrease in integrated intensities. The pleochroic features of the OH vibration bands, i.e., the predominant orientation of OH dipoles along the crystallographic a axis in all feldspars and the additional band component perpendicular to the (010) plane in sanidine are still present in the high-temperature spectra. Different behavior during long-term annealing at high temperature was found for the alkali feldspars and the plagioclases. At 900–1000 °C, the Eifel sanidines rapidly lost about one quarter of the initial water content which is attributed to a weakly bound hydrogen species in the feldspar structure. The remaining hydrogen is very strongly bound and was still detectable in 0.7–0.9 mm thick sections after annealing for 108 days at 1000 °C in air dried by phosphorus pentoxide. In contrast, a 1-mm-thick section of plagioclase completely lost hydrogen during heating in air within 8 days at 1000 °C. After partial dehydration, the pleochroic behavior of the OH absorption bands of the feldspars was basically preserved except that the 3050 cm−1 band of the sanidine, oriented perpendicular to (010), becomes more pronounced than the 3400 cm−1 band, oriented parallel to the a direction. Annealing experiments at 1000 °C under controlled water pressures indicate equilibrium solubilities of several tens of ppm H2O in the plagioclases and more than 100 ppm H2O in the alkali feldspars already at 1 bar water pressure. The variation of the water content with H2O pressure and spectroscopic observations indicates that the water content in the feldspars is determined not only by the water pressure but also by already existing defects. Vacancies on alkali sites (VA1) may accommodate H2O molecules, possibly with subsequent hydrolysis of network bonds to minimize local stress. A likely explanation for the strongly bound hydrogen in the sanidine is a coupled substitution of H+ + Al3+ for Si4+ (AlOH defect) where the protons are located on interstitial sites. This incorporation model is supported by the complete recovery of the defects in H2O vapor after previous proton/alkali exchange in alkali chloride vapor at 1000 °C.

Keywords

    Diffusion, Hydrogen defects, Igneous feldspar, Infrared spectroscopy, Water solubility

ASJC Scopus subject areas

Cite this

Hydrogen defects in feldspars: defect properties and implications for water solubility in feldspar. / Behrens, Harald.
In: Physics and chemistry of minerals, Vol. 48, No. 2, 8, 02.2021.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{5f34a032de07481eae0d7e065342d28b,
title = "Hydrogen defects in feldspars: defect properties and implications for water solubility in feldspar",
abstract = "Hydrogen defects can strongly affect mechanical and chemical properties of feldspars. To get insight into the behavior of such defects, alkali feldspar and plagioclase of igneous origin were studied combining IR spectroscopy with heating experiments under well-controlled conditions. Near-infrared spectra show that OH groups are the predominant hydrous species in these feldspars but presence of minor amounts of molecular H2O cannot be excluded. Short-term annealing at 400–800 °C produces a small but significant irreversible change in the OH stretching vibration band which is attributed to relaxation of the feldspar structure. Polarized mid-infrared spectra of sanidine, adularia, and plagioclase recorded in situ at temperatures up to 600 °C show reversible shifts of maxima toward higher wavenumber and an overall decrease in integrated intensities. The pleochroic features of the OH vibration bands, i.e., the predominant orientation of OH dipoles along the crystallographic a axis in all feldspars and the additional band component perpendicular to the (010) plane in sanidine are still present in the high-temperature spectra. Different behavior during long-term annealing at high temperature was found for the alkali feldspars and the plagioclases. At 900–1000 °C, the Eifel sanidines rapidly lost about one quarter of the initial water content which is attributed to a weakly bound hydrogen species in the feldspar structure. The remaining hydrogen is very strongly bound and was still detectable in 0.7–0.9 mm thick sections after annealing for 108 days at 1000 °C in air dried by phosphorus pentoxide. In contrast, a 1-mm-thick section of plagioclase completely lost hydrogen during heating in air within 8 days at 1000 °C. After partial dehydration, the pleochroic behavior of the OH absorption bands of the feldspars was basically preserved except that the 3050 cm−1 band of the sanidine, oriented perpendicular to (010), becomes more pronounced than the 3400 cm−1 band, oriented parallel to the a direction. Annealing experiments at 1000 °C under controlled water pressures indicate equilibrium solubilities of several tens of ppm H2O in the plagioclases and more than 100 ppm H2O in the alkali feldspars already at 1 bar water pressure. The variation of the water content with H2O pressure and spectroscopic observations indicates that the water content in the feldspars is determined not only by the water pressure but also by already existing defects. Vacancies on alkali sites (VA1) may accommodate H2O molecules, possibly with subsequent hydrolysis of network bonds to minimize local stress. A likely explanation for the strongly bound hydrogen in the sanidine is a coupled substitution of H+ + Al3+ for Si4+ (AlOH defect) where the protons are located on interstitial sites. This incorporation model is supported by the complete recovery of the defects in H2O vapor after previous proton/alkali exchange in alkali chloride vapor at 1000 °C.",
keywords = "Diffusion, Hydrogen defects, Igneous feldspar, Infrared spectroscopy, Water solubility",
author = "Harald Behrens",
note = "Funding Information: This paper is dedicated to Hans Wondratschek, whose passion was the sanidines from the Eifel. The sanidine SV was a donation from him, but I thank him also for numerous discussions in former times. The research was supported by the German Science foundation (DFG). Thanks to Dr. U. Reinholz from BAM, Berlin who performed the NRA measurements on the feldspars. ",
year = "2021",
month = feb,
doi = "10.1007/s00269-020-01128-0",
language = "English",
volume = "48",
journal = "Physics and chemistry of minerals",
issn = "0342-1791",
publisher = "Springer Verlag",
number = "2",

}

Download

TY - JOUR

T1 - Hydrogen defects in feldspars

T2 - defect properties and implications for water solubility in feldspar

AU - Behrens, Harald

N1 - Funding Information: This paper is dedicated to Hans Wondratschek, whose passion was the sanidines from the Eifel. The sanidine SV was a donation from him, but I thank him also for numerous discussions in former times. The research was supported by the German Science foundation (DFG). Thanks to Dr. U. Reinholz from BAM, Berlin who performed the NRA measurements on the feldspars.

PY - 2021/2

Y1 - 2021/2

N2 - Hydrogen defects can strongly affect mechanical and chemical properties of feldspars. To get insight into the behavior of such defects, alkali feldspar and plagioclase of igneous origin were studied combining IR spectroscopy with heating experiments under well-controlled conditions. Near-infrared spectra show that OH groups are the predominant hydrous species in these feldspars but presence of minor amounts of molecular H2O cannot be excluded. Short-term annealing at 400–800 °C produces a small but significant irreversible change in the OH stretching vibration band which is attributed to relaxation of the feldspar structure. Polarized mid-infrared spectra of sanidine, adularia, and plagioclase recorded in situ at temperatures up to 600 °C show reversible shifts of maxima toward higher wavenumber and an overall decrease in integrated intensities. The pleochroic features of the OH vibration bands, i.e., the predominant orientation of OH dipoles along the crystallographic a axis in all feldspars and the additional band component perpendicular to the (010) plane in sanidine are still present in the high-temperature spectra. Different behavior during long-term annealing at high temperature was found for the alkali feldspars and the plagioclases. At 900–1000 °C, the Eifel sanidines rapidly lost about one quarter of the initial water content which is attributed to a weakly bound hydrogen species in the feldspar structure. The remaining hydrogen is very strongly bound and was still detectable in 0.7–0.9 mm thick sections after annealing for 108 days at 1000 °C in air dried by phosphorus pentoxide. In contrast, a 1-mm-thick section of plagioclase completely lost hydrogen during heating in air within 8 days at 1000 °C. After partial dehydration, the pleochroic behavior of the OH absorption bands of the feldspars was basically preserved except that the 3050 cm−1 band of the sanidine, oriented perpendicular to (010), becomes more pronounced than the 3400 cm−1 band, oriented parallel to the a direction. Annealing experiments at 1000 °C under controlled water pressures indicate equilibrium solubilities of several tens of ppm H2O in the plagioclases and more than 100 ppm H2O in the alkali feldspars already at 1 bar water pressure. The variation of the water content with H2O pressure and spectroscopic observations indicates that the water content in the feldspars is determined not only by the water pressure but also by already existing defects. Vacancies on alkali sites (VA1) may accommodate H2O molecules, possibly with subsequent hydrolysis of network bonds to minimize local stress. A likely explanation for the strongly bound hydrogen in the sanidine is a coupled substitution of H+ + Al3+ for Si4+ (AlOH defect) where the protons are located on interstitial sites. This incorporation model is supported by the complete recovery of the defects in H2O vapor after previous proton/alkali exchange in alkali chloride vapor at 1000 °C.

AB - Hydrogen defects can strongly affect mechanical and chemical properties of feldspars. To get insight into the behavior of such defects, alkali feldspar and plagioclase of igneous origin were studied combining IR spectroscopy with heating experiments under well-controlled conditions. Near-infrared spectra show that OH groups are the predominant hydrous species in these feldspars but presence of minor amounts of molecular H2O cannot be excluded. Short-term annealing at 400–800 °C produces a small but significant irreversible change in the OH stretching vibration band which is attributed to relaxation of the feldspar structure. Polarized mid-infrared spectra of sanidine, adularia, and plagioclase recorded in situ at temperatures up to 600 °C show reversible shifts of maxima toward higher wavenumber and an overall decrease in integrated intensities. The pleochroic features of the OH vibration bands, i.e., the predominant orientation of OH dipoles along the crystallographic a axis in all feldspars and the additional band component perpendicular to the (010) plane in sanidine are still present in the high-temperature spectra. Different behavior during long-term annealing at high temperature was found for the alkali feldspars and the plagioclases. At 900–1000 °C, the Eifel sanidines rapidly lost about one quarter of the initial water content which is attributed to a weakly bound hydrogen species in the feldspar structure. The remaining hydrogen is very strongly bound and was still detectable in 0.7–0.9 mm thick sections after annealing for 108 days at 1000 °C in air dried by phosphorus pentoxide. In contrast, a 1-mm-thick section of plagioclase completely lost hydrogen during heating in air within 8 days at 1000 °C. After partial dehydration, the pleochroic behavior of the OH absorption bands of the feldspars was basically preserved except that the 3050 cm−1 band of the sanidine, oriented perpendicular to (010), becomes more pronounced than the 3400 cm−1 band, oriented parallel to the a direction. Annealing experiments at 1000 °C under controlled water pressures indicate equilibrium solubilities of several tens of ppm H2O in the plagioclases and more than 100 ppm H2O in the alkali feldspars already at 1 bar water pressure. The variation of the water content with H2O pressure and spectroscopic observations indicates that the water content in the feldspars is determined not only by the water pressure but also by already existing defects. Vacancies on alkali sites (VA1) may accommodate H2O molecules, possibly with subsequent hydrolysis of network bonds to minimize local stress. A likely explanation for the strongly bound hydrogen in the sanidine is a coupled substitution of H+ + Al3+ for Si4+ (AlOH defect) where the protons are located on interstitial sites. This incorporation model is supported by the complete recovery of the defects in H2O vapor after previous proton/alkali exchange in alkali chloride vapor at 1000 °C.

KW - Diffusion

KW - Hydrogen defects

KW - Igneous feldspar

KW - Infrared spectroscopy

KW - Water solubility

UR - http://www.scopus.com/inward/record.url?scp=85099777498&partnerID=8YFLogxK

U2 - 10.1007/s00269-020-01128-0

DO - 10.1007/s00269-020-01128-0

M3 - Article

AN - SCOPUS:85099777498

VL - 48

JO - Physics and chemistry of minerals

JF - Physics and chemistry of minerals

SN - 0342-1791

IS - 2

M1 - 8

ER -