Details
Original language | English |
---|---|
Qualification | Doctor rerum naturalium |
Awarding Institution | |
Supervised by |
|
Date of Award | 6 Jun 2023 |
Place of Publication | Hannover |
Publication status | Published - 2023 |
Abstract
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Hannover, 2023. 129 p.
Research output: Thesis › Doctoral thesis
}
TY - BOOK
T1 - Hybrid human-AI driven open personalized education
AU - Tavakoli, Mohammadreza
PY - 2023
Y1 - 2023
N2 - Attaining those skills that match labor market demand is getting increasingly complicated as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Furthermore, people's interests in gaining knowledge pertaining to their personal life (e.g., hobbies and life-hacks) are also increasing dramatically in recent decades. In this situation, anticipating and addressing the learning needs are fundamental challenges to twenty-first century education. The need for such technologies has escalated due to the COVID-19 pandemic, where online education became a key player in all types of training programs. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open/free educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. Therefore, this thesis aims to contribute to the literature about the utilization of (open and free-online) educational resources toward goal-driven personalized informal learning, by developing a novel Human-AI based system, called eDoer. In this thesis, we discuss all the new knowledge that was created in order to complete the system development, which includes 1) prototype development and qualitative user validation, 2) decomposing the preliminary requirements into meaningful components, 3) implementation and validation of each component, and 4) a final requirement analysis followed by combining the implemented components in order develop and validate the planned system (eDoer). All in all, our proposed system 1) derives the skill requirements for a wide range of occupations (as skills and jobs are typical goals in informal learning) through an analysis of online job vacancy announcements, 2) decomposes skills into learning topics, 3) collects a variety of open/free online educational resources that address those topics, 4) checks the quality of those resources and topic relevance using our developed intelligent prediction models, 5) helps learners to set their learning goals, 6) recommends personalized learning pathways and learning content based on individual learning goals, and 7) provides assessment services for learners to monitor their progress towards their desired learning objectives. Accordingly, we created a learning dashboard focusing on three Data Science related jobs and conducted an initial validation of eDoer through a randomized experiment. Controlling for the effects of prior knowledge as assessed by the pretest, the randomized experiment provided tentative support for the hypothesis that learners who engaged with personal eDoer recommendations attain higher scores on the posttest than those who did not. The hypothesis that learners who received personalized content in terms of format, length, level of detail, and content type, would achieve higher scores than those receiving non-personalized content was not supported as a statistically significant result.
AB - Attaining those skills that match labor market demand is getting increasingly complicated as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Furthermore, people's interests in gaining knowledge pertaining to their personal life (e.g., hobbies and life-hacks) are also increasing dramatically in recent decades. In this situation, anticipating and addressing the learning needs are fundamental challenges to twenty-first century education. The need for such technologies has escalated due to the COVID-19 pandemic, where online education became a key player in all types of training programs. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open/free educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. Therefore, this thesis aims to contribute to the literature about the utilization of (open and free-online) educational resources toward goal-driven personalized informal learning, by developing a novel Human-AI based system, called eDoer. In this thesis, we discuss all the new knowledge that was created in order to complete the system development, which includes 1) prototype development and qualitative user validation, 2) decomposing the preliminary requirements into meaningful components, 3) implementation and validation of each component, and 4) a final requirement analysis followed by combining the implemented components in order develop and validate the planned system (eDoer). All in all, our proposed system 1) derives the skill requirements for a wide range of occupations (as skills and jobs are typical goals in informal learning) through an analysis of online job vacancy announcements, 2) decomposes skills into learning topics, 3) collects a variety of open/free online educational resources that address those topics, 4) checks the quality of those resources and topic relevance using our developed intelligent prediction models, 5) helps learners to set their learning goals, 6) recommends personalized learning pathways and learning content based on individual learning goals, and 7) provides assessment services for learners to monitor their progress towards their desired learning objectives. Accordingly, we created a learning dashboard focusing on three Data Science related jobs and conducted an initial validation of eDoer through a randomized experiment. Controlling for the effects of prior knowledge as assessed by the pretest, the randomized experiment provided tentative support for the hypothesis that learners who engaged with personal eDoer recommendations attain higher scores on the posttest than those who did not. The hypothesis that learners who received personalized content in terms of format, length, level of detail, and content type, would achieve higher scores than those receiving non-personalized content was not supported as a statistically significant result.
U2 - 10.15488/14084
DO - 10.15488/14084
M3 - Doctoral thesis
CY - Hannover
ER -